966 resultados para Vortex Dislocation
Resumo:
Wingtip vortices represent a hazard for the stability of the following airplane in airport highways. These flows have been usually modeled as swirling jets/wakes, which are known to be highly unstable and susceptible to breakdown at high Reynolds numbers for certain flow conditions, but different to the ones present in real flying airplanes. A very recent study based on Direct Numerical Simulations (DNS) shows that a large variety of helical responses can be excited and amplified when a harmonic inlet forcing is imposed. In this work, the optimal response of q-vortex (both axial vorticity and axial velocity can be modeled by a Gaussian profile) is studied by considering the time-harmonically forced problem with a certain frequency ω. We first reproduce Guo and Sun’s results for the Lamb-Oseen vortex (no axial flow) to validate our numerical code. In the axisymmetric case m = 0, the system response is the largest when the input frequency is null. The axial flow has a weak influence in the response for any axial velocity intensity. We also consider helical perturbations |m| = 1. These perturbations are excited through a resonance mechanism at moderate and large wavelengths as it is shown in Figure 1. In addition, Figure 2 shows that the frequency at which the optimal gain is obtained is not a continuous function of the axial wavenumber k. At smaller wavelengths, large response is excited by steady forcing. Regarding the axial flow, the unstable response is the largest when the axial velocity intensity, 1/q, is near to zero. For perturbations with higher azimuthal wavenumbers |m| > 1, the magnitudes of the response are smaller than those for helical modes. In order to establish an alternative validation, DNS has been carried out by using a pseudospectral Fourier formulation finding a very good agreement.
Resumo:
Wingtip vortices are created by flying airplanes due to lift generation. The vortex interaction with the trailing aircraft has sparked researchers’ interest to develop an efficient technique to destroy these vortices. Different models have been used to describe the vortex dynamics and they all show that, under real flight conditions, the most unstable modes produce a very weak amplification. Another linear instability mechanism that can produce high energy gains in short times is due to the non-normality of the system. Recently, it has been shown that these non-normal perturbations also produce this energy growth when they are excited with harmonic forcing functions. In this study, we analyze numerically the nonlinear evolution of a spatially, pointwise and temporally forced perturbation, generated by a synthetic jet at a given radial distance from the vortex core. This type of perturbation is able to produce high energy gains in the perturbed base flow (10^3), and is also a suitable candidate for use in engineering applications. The flow field is solved for using fully nonlinear three-dimensional direct numerical simulation with a spectral multidomain penalty method model. Our novel results show that the nonlinear effects are able to produce locally small bursts of instability that reduce the intensity of the primary vortex.
Resumo:
The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.
Resumo:
To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.
Resumo:
This thesis critically analyses sperm donation practices from a child-centred perspective. It examines the effects, both personal and social, of disrupting the unity of biological and social relatedness in families affected by donor conception. It examines how disruption is facilitated by a process of mediation which is detailed using a model provided by Sunderland (2002). This model identifies mediating movements - alienation, translation, re-contextualisation and absorption - which help to explain the powerful and dominating material, and social and political processes which occur in biotechnology, or in reproductive technology in this case. The understanding of such movements and mediation of meanings is inspired by the complementary work of Silverstone (1999) and Sunderland. This model allows for a more critical appreciation of the movement of meaning from previously inalienable aspects of life to alienable products through biotechnology (Sunderland, 2002). Once this mediation in donor conception is subjected to critical examination here, it is then approached from different angles of investigation. The thesis posits that two conflicting notions of the self are being applied to fertility-frustrated adults and the offspring of reproductive interventions. Adults using reproductive interventions receive support to maximise their genetic continuity, but in so doing they create and dismiss the corresponding genetic discontinuity produced for the offspring. The offspring’s kinship and identity are then framed through an experimental postmodernist notion, presenting them as social rather than innate constructs. The adults using the reproductive intervention, on the other hand, have their identity and kinship continuity framed and supported as normative, innate, and based on genetic connection. This use of shifting frameworks is presented as unjust and harmful, creating double standards and a corrosion of kinship values, connection and intelligibility between generations; indeed, it is put forward as adult-centric. The analysis of other forms of human kinship dislocation provided by this thesis explores an under-utilised resource which is used to counter the commonly held opinion that any disruption of social and genetic relatedness for donor offspring is insignificant. The experiences of adoption and the stolen generations are used to inform understanding of the personal and social effects of such kinship disruption and potential reunion for donor offspring. These examples, along with laws governing international human rights, further strengthen the appeal here for normative principles and protections based on collective knowledge and standards to be applied to children of reproductive technology. The thesis presents the argument that the framing and regulation of reproductive technology is excessively influenced by industry providers and users. The interests of these parties collide with and corrode any accurate assessments and protections afforded to the children of reproductive technology. The thesis seeks to counter such encroachments and concludes by presenting these protections, frameworks, and human experiences as resources which can help to address the problems created for the offspring of such reproductive interventions, thereby illustrating why these reproductive interventions should be discontinued.
Resumo:
Background: The objective of routine outpatient assessment of well functioning patients after primary total hip arthroplasty (THA) is to detect asymptomatic failure of prostheses to guide recommendations for early intervention. We have observed that the revision of THAs in asymptomatic patients is highly uncommon. We therefore question the need for routine follow-up of patients after THA. Methods: A prospective analysis of an orthopaedic database identified 158 patients who received 177 revision THAs over a 4 year period. A retrospective chart review was conducted. Patient demographics, primary and revision surgery parameters and follow-up information was recorded and cross referenced with AOA NJRR data. Results: 110 THAs in 104 patients (average age 70.4 (SD 9.8 years). There were 70 (63.6%) total, 13 (11.8%) femoral and 27 (24.5%) acetabular revisions. The indications for revision were aseptic loosening (70%), dislocation (8.2%), peri-prosthetic fracture (7.3%), osteolysis (6.4%) and infection (4.5%). Only 4 (3.6%) were asymptomatic revisions. A mean of 5.3 (SD 5.2 and 1.9 (SD 5.3 follow-up appointments were required before revision in patients with and without symptoms, respectively. The average time from the primary to revision surgery was 11.8 (SD 7.23) years. Conclusions: We conclude that patients with prostheses with excellent long term clinical results as validated by Joint Registries, routine follow-up of asymptomatic THA should be questioned and requires further investigation. Based on the work of this study, the current practice of routine follow-up of asymptomatic THA may be excessively costly and unnecessary and a less resource-intensive review method may be more appropriate.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.
Resumo:
Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.
Resumo:
In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.
Resumo:
A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.
Resumo:
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the mono-crystalline copper with different defects is investigated through tension and nanoindentation simulation. The single-crystal copper nanowire with surface defects is firstly studied through tension. For validation, the tension simulations for nanowire without defect are carried out under different temperatures and strain rates. The defects on nanowires are then systematically studied in considering different defects orientation distribution. It is found that the Young’s modulus is insensitive of surface defects and centro-plane defects. However, the yield strength and yield point show a significant decrease due to the different defects. Specially, the 〖45〗^° defect in surface and in (200) plane exerts the biggest influence to the yield strength, about 34.20% and 51.45% decrease are observed, respectively. Different defects are observed to serve as a dislocation source and different necking positions of the nanowires during tension are found. During nanoindentation simulation, dislocation is found nucleating below the contact area, but no obvious dislocation is generated around the nano-cavity. Comparing with the perfect substrate during nanoindentation, the substrate with nano-cavities emerged less dislocations, it is supposed that the nano-cavity absorbed part of the indent energy, and less plastic deformation happened in the defected substrate.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.