831 resultados para Vision, Monocular.
Resumo:
Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.
Resumo:
The importance of vision-based systems for Sense-and-Avoid is increasing nowadays as remotely piloted and autonomous UAVs become part of the non-segregated airspace. The development and evaluation of these systems demand flight scenario images which are expensive and risky to obtain. Currently Augmented Reality techniques allow the compositing of real flight scenario images with 3D aircraft models to produce useful realistic images for system development and benchmarking purposes at a much lower cost and risk. With the techniques presented in this paper, 3D aircraft models are positioned firstly in a simulated 3D scene with controlled illumination and rendering parameters. Realistic simulated images are then obtained using an image processing algorithm which fuses the images obtained from the 3D scene with images from real UAV flights taking into account on board camera vibrations. Since the intruder and camera poses are user-defined, ground truth data is available. These ground truth annotations allow to develop and quantitatively evaluate aircraft detection and tracking algorithms. This paper presents the software developed to create a public dataset of 24 videos together with their annotations and some tracking application results.
Resumo:
Presentación Póster en ESMAC 2012
Resumo:
En el ámbito de la robótica de servicio, actualmente no existe una solución automatizada para la inspección ultrasónica de las partes de material compuesto de una aeronave durante las operaciones de mantenimiento que realiza la aerolínea. El desarrollo de las nuevas técnicas de acoplamiento acústico en seco en el método de inspección no destructiva por ultrasonidos, está conduciendo a posibilitar su uso con soluciones de menor coste respecto a las técnicas tradicionales, sin perder eficacia para detectar las deficiencias en las estructuras de material compuesto. Aunque existen aplicaciones de esta técnica con soluciones manuales, utilizadas en las fases de desarrollo y fabricación del material compuesto, o con soluciones por control remoto en sectores diferentes al aeronáutico para componentes metálicos, sin embargo, no existen con soluciones automatizadas para la inspección no destructiva por ultrasonidos de las zonas del avión fabricadas en material compuesto una vez la aeronave ha sido entregada a la aerolínea. El objetivo de este trabajo fin de master es evaluar el sistema de localización, basado en visión por ordenador, de una solución robotizada aplicada la inspección ultrasónica estructural de aeronaves en servicio por parte de las propias aerolíneas, utilizando las nuevas técnicas de acoplamiento acústico en seco, buscando la ventaja de reducir los tiempos y los costes en las operaciones de mantenimiento. Se propone como solución un robot móvil autónomo de pequeño tamaño, con control de posición global basado en técnicas de SLAM Visual Monocular, utilizando marcadores visuales externos para delimitar el área de inspección. Se ha supuesto la inspección de elementos de la aeronave cuya superficie se pueda considerar plana y horizontal, como son las superficies del estabilizador horizontal o del ala. Este supuesto es completamente aceptable en zonas acotadas de estos componentes, y de cara al objetivo del proyecto, no le resta generalidad. El robot móvil propuesto es un vehículo terrestre triciclo, de dos grados de libertad, con un sistema de visión monocular completo embarcado, incluyendo el hardware de procesamiento de visión y control de trayectoria. Las dos ruedas delanteras son motrices y la tercera rueda, loca, sirve únicamente de apoyo. La dirección, de tipo diferencial, permite al robot girar sin necesidad de desplazamiento, al conseguirse por diferencia de velocidad entre la rueda motriz derecha e izquierda. El sistema de inspección ultrasónica embarcado está compuesto por el hardware de procesamiento y registro de señal, y una rueda-sensor situada coaxialmente al eje de las ruedas motrices, y centrada entre estas, de modo que la medida de inspección se realiza en el centro de rotación del robot. El control visual propuesto se realiza mediante una estrategia “ver y mover” basada en posición, ejecutándose de forma secuencial la extracción de características visuales de la imagen, el cálculo de la localización global del robot mediante SLAM visual y el movimiento de éste mediante un algoritmo de control de posición-orientación respecto a referencias de paso de la trayectoria. La trayectoria se planifica a partir del mapa de marcas visuales que delimitan el área de inspección, proporcionado también por SLAM visual. Para validar la solución propuesta se ha optado por desarrollar un prototipo físico tanto del robot como de los marcadores visuales externos, a los que se someterán a una prueba de validación como alternativa a utilizar un entorno simulado por software, consistente en el reconocimiento del área de trabajo, planeamiento de la trayectoria y recorrido de la misma, de forma autónoma, registrando el posicionamiento real del robot móvil junto con el posicionamiento proporcionado por el sistema de localización SLAM. El motivo de optar por un prototipo es validar la solución ante efectos físicos que son muy complicados de modelar en un entorno de simulación, derivados de las limitaciones constructivas de los sistemas de visión, como distorsiones ópticas o saturación de los sensores, y de las limitaciones constructivas de la mecánica del robot móvil que afectan al modelo cinemático, como son el deslizamiento de las ruedas o la fluctuación de potencia de los motores eléctricos. El prototipo de marcador visual externo utilizado para la prueba de validación, ha sido un símbolo plano vertical, en blanco y negro, que consta de un borde negro rectangular dentro del cual se incluye una serie de marcas cuadradas de color negro, cuya disposición es diferente para cada marcador, lo que permite su identificación. El prototipo de robot móvil utilizado para la prueba de validación, ha sido denominado VINDUSTOR: “VIsual controlled Non-Destructive UltraSonic inspecTOR”. Su estructura mecánica ha sido desarrollada a partir de la plataforma comercial de robótica educacional LEGO© MINDSTORMS NXT 2.0, que incluye los dos servomotores utilizados para accionar las dos ruedas motrices, su controlador, las ruedas delanteras y la rueda loca trasera. La estructura mecánica ha sido especialmente diseñada con piezas LEGO© para embarcar un ordenador PC portátil de tamaño pequeño, utilizado para el procesamiento visual y el control de movimiento, y el sistema de captación visual compuesto por dos cámaras web de bajo coste, colocadas una en posición delantera y otra en posición trasera, con el fin de aumentar el ángulo de visión. El peso total del prototipo no alcanza los 2 Kg, siendo sus dimensiones máximas 20 cm de largo, 25 cm de ancho y 26 cm de alto. El prototipo de robot móvil dispone de un control de tipo visual. La estrategia de control es de tipo “ver y mover” dinámico, en la que se realiza un bucle externo, de forma secuencial, la extracción de características en la imagen, la estimación de la localización del robot y el cálculo del control, y en un bucle interno, el control de los servomotores. La estrategia de adquisición de imágenes está basada en un sistema monocular de cámaras embarcadas. La estrategia de interpretación de imágenes está basada en posición tridimensional, en la que los objetivos de control se definen en el espacio de trabajo y no en la imagen. La ley de control está basada en postura, relacionando la velocidad del robot con el error en la posición respecto a las referencias de paso de una trayectoria. La trayectoria es generada a partir del mapa de marcadores visuales externo. En todo momento, la localización del robot respecto a un sistema de referencia externo y el mapa de marcadores, es realizado mediante técnicas de SLAM visual. La auto-localización de un robot móvil dentro de un entorno desconocido a priori constituye uno de los desafíos más importantes en la robótica, habiéndose conseguido su solución en las últimas décadas, con una formulación como un problema numérico y con implementaciones en casos que van desde robots aéreos a robots en entornos cerrados, existiendo numerosos estudios y publicaciones al respecto. La primera técnica de localización y mapeo simultáneo SLAM fue desarrollada en 1989, más como un concepto que como un algoritmo único, ya que su objetivo es gestionar un mapa del entorno constituido por posiciones de puntos de interés, obtenidos únicamente a partir de los datos de localización recogidos por los sensores, y obtener la pose del robot respecto al entorno, en un proceso limitado por el ruido de los sensores, tanto en la detección del entorno como en la odometría del robot, empleándose técnicas probabilísticas aumentar la precisión en la estimación. Atendiendo al algoritmo probabilístico utilizado, las técnicas SLAM pueden clasificarse en las basadas en Filtros de Kalman, en Filtros de Partículas y en su combinación. Los Filtros de Kalman consideran distribuciones de probabilidad gaussiana tanto en las medidas de los sensores como en las medidas indirectas obtenidas a partir de ellos, de modo que utilizan un conjunto de ecuaciones para estimar el estado de un proceso, minimizando la media del error cuadrático, incluso cuando el modelo del sistema no se conoce con precisión, siendo el más utilizado el Filtro de Kalman Extendido a modelos nolineales. Los Filtros de Partículas consideran distribuciones de probabilidad en las medidas de los sensores sin modelo, representándose mediante un conjunto de muestras aleatorias o partículas, de modo que utilizan el método Montecarlo secuencial para estimar la pose del robot y el mapa a partir de ellas de forma iterativa, siendo el más utilizado el Rao-Backwell, que permite obtener un estimador optimizado mediante el criterio del error cuadrático medio. Entre las técnicas que combinan ambos tipos de filtros probabilísticos destaca el FastSLAM, un algoritmo que estima la localización del robot con un Filtro de Partículas y la posición de los puntos de interés mediante el Filtro de Kalman Extendido. Las técnicas SLAM puede utilizar cualquier tipo de sensor que proporcionen información de localización, como Laser, Sonar, Ultrasonidos o Visión. Los sensores basados en visión pueden obtener las medidas de distancia mediante técnicas de visión estereoscópica o mediante técnica de visión monocular. La utilización de sensores basados en visión tiene como ventajas, proporcionar información global a través de las imágenes, no sólo medida de distancia, sino también información adicional como texturas o patrones, y la asequibilidad del hardware frente a otros sensores. Sin embargo, su principal inconveniente es el alto coste computacional necesario para los complejos algoritmos de detección, descripción, correspondencia y reconstrucción tridimensional, requeridos para la obtención de la medida de distancia a los múltiples puntos de interés procesados. Los principales inconvenientes del SLAM son el alto coste computacional, cuando se utiliza un número elevado de características visuales, y su consistencia ante errores, derivados del ruido en los sensores, del modelado y del tratamiento de las distribuciones de probabilidad, que pueden producir el fallo del filtro. Dado que el SLAM basado en el Filtro de Kalman Extendido es una las técnicas más utilizadas, se ha seleccionado en primer lugar cómo solución para el sistema de localización del robot, realizando una implementación en la que las medidas de los sensores y el movimiento del robot son simulados por software, antes de materializarla en el prototipo. La simulación se ha realizado considerando una disposición de ocho marcadores visuales que en todo momento proporcionan ocho medidas de distancia con ruido aleatorio equivalente al error del sensor visual real, y un modelo cinemático del robot que considera deslizamiento de las ruedas mediante ruido aleatorio. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-EKF presenta tendencia a corregir la localización obtenida mediante la odometría, pero no en suficiente cuantía para dar un resultado aceptable, sin conseguir una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. La conclusión obtenida tras la simulación ha sido que el algoritmo SLAMEKF proporciona inadecuada convergencia de precisión, debido a la alta incertidumbre en la odometría y a la alta incertidumbre en las medidas de posición de los marcadores proporcionadas por el sensor visual. Tras estos resultados, se ha buscado una solución alternativa. Partiendo de la idea subyacente en los Filtros de Partículas, se ha planteado sustituir las distribuciones de probabilidad gaussianas consideradas por el Filtro de Kalman Extendido, por distribuciones equi-probables que derivan en funciones binarias que representan intervalos de probabilidad no-nula. La aplicación de Filtro supone la superposición de todas las funciones de probabilidad no-nula disponibles, de modo que el resultado es el intervalo donde existe alguna probabilidad de la medida. Cómo la efectividad de este filtro aumenta con el número disponible de medidas, se ha propuesto obtener una medida de la localización del robot a partir de cada pareja de medidas disponibles de posición de los marcadores, haciendo uso de la Trilateración. SLAM mediante Trilateración Estadística (SLAM-ST) es como se ha denominado a esta solución propuesta en este trabajo fin de master. Al igual que con el algoritmo SLAM-EKF, ha sido realizada una implementación del algoritmo SLAM-ST en la que las medidas de los sensores y el movimiento del robot son simulados, antes de materializarla en el prototipo. La simulación se ha realizado en las mismas condiciones y con las mismas consideraciones, para comparar con los resultados obtenidos con el algoritmo SLAM-EKF. Durante la simulación, los resultados han mostrado que la localización estimada por el algoritmo SLAM-ST presenta mayor tendencia que el algoritmo SLAM-EKF a corregir la localización obtenida mediante la odometría, de modo que se alcanza una convergencia a una solución suficientemente cercana a la localización simulada del robot y los marcadores. Las conclusiones obtenidas tras la simulación han sido que, en condiciones de alta incertidumbre en la odometría y en la medida de posición de los marcadores respecto al robot, el algoritmo SLAM-ST proporciona mejores resultado que el algoritmo SLAM-EKF, y que la precisión conseguida sugiere la viabilidad de la implementación en el prototipo. La implementación del algoritmo SLAM-ST en el prototipo ha sido realizada en conjunción con la implementación del Sensor Visual Monocular, el Modelo de Odometría y el Control de Trayectoria. El Sensor Visual Monocular es el elemento del sistema SLAM encargado de proporcionar la posición con respecto al robot de los marcadores visuales externos, a partir de las imágenes obtenidas por las cámaras, mediante técnicas de procesamiento de imagen que permiten detectar e identificar los marcadores visuales que se hallen presentes en la imagen capturada, así como obtener las características visuales a partir de las cuales inferir la posición del marcador visual respecto a la cámara, mediante reconstrucción tridimensional monocular, basada en el conocimiento a-priori del tamaño real del mismo. Para tal fin, se ha utilizado el modelo matemático de cámara pin-hole, y se ha considerado las distorsiones de la cámara real mediante la calibración del sensor, en vez de utilizar la calibración de la imagen, tras comprobar el alto coste computacional que requiere la corrección de la imagen capturada, de modo que la corrección se realiza sobre las características visuales extraídas y no sobre la imagen completa. El Modelo de Odometría es el elemento del sistema SLAM encargado de proporcionar la estimación de movimiento incremental del robot en base a la información proporcionada por los sensores de odometría, típicamente los encoders de las ruedas. Por la tipología del robot utilizado en el prototipo, se ha utilizado un modelo cinemático de un robot tipo uniciclo y un modelo de odometría de un robot móvil de dos ruedas tipo diferencial, en el que la traslación y la rotación se determinan por la diferencia de velocidad de las ruedas motrices, considerando que no existe deslizamiento entre la rueda y el suelo. Sin embargo, el deslizamiento en las ruedas aparece como consecuencia de causas externas que se producen de manera inconstante durante el movimiento del robot que provocan insuficiente contacto de la rueda con el suelo por efectos dinámicos. Para mantener la validez del modelo de odometría en todas estas situaciones que producen deslizamiento, se ha considerado un modelo de incertidumbre basado en un ensayo representativo de las situaciones más habituales de deslizamiento. El Control de Trayectoria es el elemento encargado de proporcionar las órdenes de movimiento al robot móvil. El control implementado en el prototipo está basado en postura, utilizando como entrada la desviación en la posición y orientación respecto a una referencia de paso de la trayectoria. La localización del robot utilizada es siempre de la estimación proporcionada por el sistema SLAM y la trayectoria es planeada a partir del conocimiento del mapa de marcas visuales que limitan el espacio de trabajo, mapa proporcionado por el sistema SLAM. Las limitaciones del sensor visual embarcado en la velocidad de estabilización de la imagen capturada han conducido a que el control se haya implementado con la estrategia “mirar parado”, en la que la captación de imágenes se realiza en posición estática. Para evaluar el sistema de localización basado en visión del prototipo, se ha diseñado una prueba de validación que obtenga una medida cuantitativa de su comportamiento. La prueba consiste en la realización de forma completamente autónoma de la detección del espacio de trabajo, la planificación de una trayectoria de inspección que lo transite completamente, y la ejecución del recorrido de la misma, registrando simultáneamente la localización real del robot móvil junto con la localización proporcionada por el sistema SLAM Visual Monocular. Se han realizado varias ejecuciones de prueba de validación, siempre en las mismas condiciones iniciales de posición de marcadores visuales y localización del robot móvil, comprobando la repetitividad del ensayo. Los resultados presentados corresponden a la consideración de las medidas más pesimistas obtenidas tras el procesamiento del conjunto de medidas de todos los ensayos. Los resultados revelan que, considerando todo el espacio de trabajo, el error de posición, diferencia entre los valores de proporcionados por el sistema SLAM y los valores medidos de posición real, se encuentra en el entorno de la veintena de centímetros. Además, los valores de incertidumbre proporcionados por el sistema SLAM son, en todos los casos, superiores a este error. Estos resultados conducen a concluir que el sistema de localización basado en SLAM Visual, mediante un algoritmo de Trilateración Estadística, usando un sensor visual monocular y marcadores visuales externos, funciona, proporcionando la localización del robot móvil con respecto al sistema de referencia global inicial y un mapa de su situación de los marcadores visuales, con precisión limitada, pero con incertidumbre conservativa, al estar en todo momento el error real de localización por debajo del error estimado. Sin embargo, los resultados de precisión del sistema de localización no son suficientemente altos para cumplir con los requerimientos como solución robotizada aplicada a la inspección ultrasónica estructural de aeronaves en servicio. En este sentido, los resultados sugieren que la posible continuación de este trabajo en el futuro debe centrarse en la mejora de la precisión de localización del robot móvil, con líneas de trabajo encaminadas a mejorar el comportamiento dinámico del prototipo, en mejorar la precisión de las medidas de posición proporcionadas por el sensor visual y en optimizar el resultado del algoritmo SLAM. Algunas de estas líneas futuras podrían ser la utilización de plataformas robóticas de desarrollo alternativas, la exploración de técnicas de visión por computador complementarias, como la odometría visual, la visión omnidireccional, la visión estereoscópica o las técnicas de reconstrucción tridimensional densa a partir de captura monocular, y el análisis de algoritmos SLAM alternativos condicionado a disponer de una sustancial mejora de precisión en el modelo de odometría y en las medidas de posición de los marcadores.
Resumo:
La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.
Resumo:
This paper presents a completely autonomous solution to participate in the Indoor Challenge of the 2013 International Micro Air Vehicle Competition (IMAV 2013). Our proposal is a multi-robot system with no centralized coordination whose robotic agents share their position estimates. The capability of each agent to navigate avoiding collisions is a consequence of the resulting emergent behavior. Each agent consists of a ground station running an instance of the proposed architecture that communicates over WiFi with an AR Drone 2.0 quadrotor. Visual markers are employed to sense and map obstacles and to improve the pose estimation based on Inertial Measurement Unit (IMU) and ground optical flow data. Based on our architecture, each robotic agent can navigate avoiding obstacles and other members of the multi-robot system. The solution is demonstrated and the achieved navigation performance is evaluated by means of experimental flights. This work also analyzes the capabilities of the presented solution in simulated flights of the IMAV 2013 Indoor Challenge. The performance of the CVG UPM team was awarded with the First Prize in the Indoor Autonomy Challenge of the IMAV 2013 competition.
Resumo:
https://bluetigercommons.lincolnu.edu/pli/1005/thumbnail.jpg
Resumo:
Praying mantids use binocular cues to judge whether their prey is in striking distance. When there are several moving targets within their binocular visual field, mantids need to solve the correspondence problem. They must select between the possible pairings of retinal images in the two eyes so that they can strike at a single real target. In this study, mantids were presented with two targets in various configurations, and the resulting fixating saccades that precede the strike were analyzed. The distributions of saccades show that mantids consistently prefer one out of several possible matches. Selection is in part guided by the position and the spatiotemporal features of the target image in each eye. Selection also depends upon the binocular disparity of the images, suggesting that insects can perform local binocular computations. The pairing rules ensure that mantids tend to aim at real targets and not at “ghost” targets arising from false matches.
Resumo:
It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.
Resumo:
Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust “neural images” of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information.
Resumo:
The coelacanth, a “living fossil,” lives near the coast of the Comoros archipelago in the Indian Ocean. Living at a depth of about 200 m, the Comoran coelacanth receives only a narrow range of light, at about 480 nm. To detect the entire range of “color” at this depth, the coelacanth appears to use only two closely related paralogous RH1 and RH2 visual pigments with the optimum light sensitivities (λmax) at 478 nm and 485 nm, respectively. The λmax values are shifted about 20 nm toward blue compared with those of the corresponding orthologous pigments. Mutagenesis experiments show that each of these coadapted changes is fully explained by two amino acid replacements.
Resumo:
Blindsight is the rare and paradoxical ability of some human subjects with occipital lobe brain damage to discriminate unseen stimuli in their clinically blind field defects when forced-choice procedures are used, implying that lesions of striate cortex produce a sharp dissociation between visual performance and visual awareness. Skeptics have argued that this is no different from the behavior of normal subjects at the lower limits of conscious vision, at which such dissociations could arise trivially by using different response criteria during clinical and forced-choice tests. We tested this claim explicitly by measuring the sensitivity of a hemianopic patient independently of his response criterion in yes-no and forced-choice detection tasks with the same stimulus and found that, unlike normal controls, his sensitivity was significantly higher during the forced-choice task. Thus, the dissociation by which blindsight is defined is not simply due to a difference in the patients’ response bias between the two paradigms. This result implies that blindsight is unlike normal, near-threshold vision and that information about the stimulus is processed in blindsighted patients in an unusual way.
Resumo:
Objective: To assess whether population screening for impaired vision among older people in the community leads to improvements in vision.