982 resultados para Viable Myocardium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em engenharia electrotécnica e de computadores - Área de Especialização de Sistemas Autónomos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The cellblock is a technique that enables the pathologist to study the morphological detail of residual samples and can be used when it is necessary to perform additional diagnostic techniques. Objective: Demonstrate the processing of bronchial washings in liquid based cytology to cellblock using HistoGel in residual samples, evaluating the morphology and preservation of cytological material. Methods: There were used 40 residual samples from bronchial washings in liquid based cytology, after determination of the clinical diagnosis, being made subsequently 40 cellblocks using HistoGel. For each cellblock there was made one histological section for analysis of cell morphology, which was subsequently stained with the routine histological staining. After microscope observation, the morphology was evaluated by 3 experts in the field of pathology, based on the parameters: Cellularity, Preservation and Background. Results: The average final score of 3 evaluators, on a scale of 0 to 100, in assessing the morphology of the 40 samples was 55.6. From the 40 histological sections, 5 of them were considered not viable for evaluation. Conclusions: The results obtained indicate median quality maintenance of morphology. However, it is noted that in only 5 cases it was not possible to determine an evaluation, knowing from the outset that these are residual samples with a very scant cellularity. Thus, it is possible to say that the processing of bronchial washings to cellblock using HistoGel contributes to a concentration of the cytological material, allowing its evaluation and subsequent diagnosis. Additional diagnostic techniques are shown equally viable in these cellblocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masters Thesis – Academic Year 2007/2008 - European Master’s Degree in Human Rights and Democratization (E.MA) - European Inter-university Centre for Human Rights and Democratization (EIUC) -Faculdade de Direito, Universidade Nova de Lisboa (UNL)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

57Th EOQ Congress, Quality Renaissance - Co-creating a Viable Future"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fungicidal action of sodium hypochlorite (0.3, 1, 2.5, 5 and 10%); formaldehyde (2, 5, and 10%); and ethyl alcohol (70%) on yeast forms of Paracoccidioides brasiliensis Pb 18 and a newly-isolated Goiana strain was described. Contact between the fungus and the disinfectants was maintained for 1, 2, 24, 48 and 72 hours at room temperature. Viability was evaluated by the fluorescein diacetate-ethidium bromide treatment, culture in solid and liquid media (36ºC and 26ºC); yeast to mycelial germination at room temperature; and radiometric study of metabolic activity. All concentrations of disinfectants were found to be effective in inactivating Pb 18 and Goiana strains, except for the 1-hour contact with 2% formaldehyde, in which fluorescein diacetate-ethidium bromide treatment was found to reveal 40 and 27% of viable cells, respectively. The yeast to mycelial germination method was considered to reveal faster and similar results as compared to culture in solid and liquid media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aims at analysing the mechanical performance of concrete with recycled aggregates (RA) from construction and demolition waste (CDW) from various locations in Portugal. First the characteristics of the various aggregates (natural and recycled) used in the production of concrete were thoroughly analysed. The composition of the RA was determined and several physical and chemical tests of the aggregates were performed. In order to evaluate the mechanical performance of concrete, compressive strength (in cubes and cylinders), splitting tensile strength, modulus of elasticity and abrasion resistance tests were performed. Concrete mixes with RA from CDW from several recycling plants were evaluated, in order to understand the influence that the RA's collection point, and consequently their composition, has on the characteristics of the mixes produced. The analysis of the mechanical performance allowed concluding that the use of RA worsens most of the properties tested, especially when fine RA are used. On the other hand, there was an increase in abrasion resistance when coarse RA were used. In global terms, the use of this type of aggregates, in limited contents, is viable from a mechanical viewpoint. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proceedings of tile 1" R.C.A.N.S. Congress, Lisboa, October 1992

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adhesive bonding is a viable technique for joining a wide range of materials. However, increasing the lifetime, reducing the costs, and improving the safety of structures are highly demanded nowadays. Hence, the development of new technologies and processes for easy recycle, heal, or self-heal of bonded structures are becoming of great interest for the industry. This paper provides an overview of the current developments in the use of “smart” adhesive technology and introduces the reader to early findings on the use of self-healing materials, thermally expandable particles, and nanoparticles, among others, in adhesives and their potential to increase the reliability of adhesive joints.