985 resultados para Varying Magnetic-fields
Resumo:
We study a quantum Otto engine operating on the basis of a helical spin-1/2 multiferroic chain with strongly coupled magnetic and ferroelectric order parameters. The presence of a finite spin chirality in the working substance enables steering of the cycle by an external electric field that couples to the electric polarization. We observe a direct connection between the chirality, the entanglement and the efficiency of the engine. An electric-field dependent threshold temperature is identified, above which the pair correlations in the system, as quantified by the thermal entanglement, diminish. In contrast to the pair correlations, the collective many-body thermal entanglement is less sensitive to the electric field, and in the high temperature limit converges to a constant value. We also discuss the correlations between the threshold temperature of the pair entanglement, the spin chirality and the minimum of the fidelities in relation to the electric and magnetic fields. The efficiency of the quantum Otto cycle shows a saturation plateau with increasing electric field amplitude.
Resumo:
In a high mobility two-dimensional electron gas (2DEG) realized in a GaAs/Al0.3Ga0.7As quantum well we observe changes in the Shubnikov-de Haas oscillations (SdHO) and in the Hall resistance for different sample geometries. We observe for each sample geometry a strong negative magnetoresistance around zero magnetic field which consists of a peak around zero magnetic field and of a huge magnetoresistance at larger fields. The peak around zero magnetic field is left unchanged for different geometries.
Resumo:
We present transport measurements on a system of two lateral quantum dots in a perpendicular magnetic field. Due to edge channel formation in an open conducting region, the quantum dots are chirally coupled. When both quantum dots are tuned into the Kondo regime simultaneously, we observe a change in the temperature dependence of the differential conductance. This is explained by the RKKY exchange interaction between the two dots. As a function of bias the differential conductance shows a splitting of the Kondo resonance which changes in the presence of RKKY interaction.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
The origin of observed ultra-high energy cosmic rays (UHECRs, energies in excess of $10^{18.5}$ eV) remains unknown, as extragalactic magnetic fields deflect these charged particles from their true origin. Interactions of these UHECRs at their source would invariably produce high energy neutrinos. As these neutrinos are chargeless and nearly massless, their propagation through the universe is unimpeded and their detection can be correlated with the origin of UHECRs. Gamma-ray bursts (GRBs) are one of the few possible origins for UHECRs, observed as short, immensely bright outbursts of gamma-rays at cosmological distances. The energy density of GRBs in the universe is capable of explaining the measured UHECR flux, making them promising UHECR sources. Interactions between UHECRs and the prompt gamma-ray emission of a GRB would produce neutrinos that would be detected in coincidence with the GRB’s gamma-ray emission. The IceCube Neutrino Observatory can be used to search for these neutrinos in coincidence with GRBs, detecting neutrinos through the Cherenkov radiation emitted by secondary charged particles produced in neutrino interactions in the South Pole glacial ice. Restricting these searches to be in coincidence with GRB gamma-ray emis- sion, analyses can be performed with very little atmospheric background. Previous searches have focused on detecting muon tracks from muon neutrino interactions fromthe Northern Hemisphere, where the Earth shields IceCube’s primary background of atmospheric muons, or spherical cascade events from neutrinos of all flavors from the entire sky, with no compelling neutrino signal found. Neutrino searches from GRBs with IceCube have been extended to a search for muon tracks in the Southern Hemisphere in coincidence with 664 GRBs over five years of IceCube data in this dissertation. Though this region of the sky contains IceCube’s primary background of atmospheric muons, it is also where IceCube is most sensitive to neutrinos at the very highest energies as Earth absorption in the Northern Hemisphere becomes relevant. As previous neutrino searches have strongly constrained neutrino production in GRBs, a new per-GRB analysis is introduced for the first time to discover neutrinos in coincidence with possibly rare neutrino-bright GRBs. A stacked analysis is also performed to discover a weak neutrino signal distributed over many GRBs. Results of this search are found to be consistent with atmospheric muon backgrounds. Combining this result with previously published searches for muon neutrino tracks in the Northern Hemisphere, cascade event searches over the entire sky, and an extension of the Northern Hemisphere track search in three additional years of IceCube data that is consistent with atmospheric backgrounds, the most stringent limits yet can be placed on prompt neutrino production in GRBs, which increasingly disfavor GRBs as primary sources of UHECRs in current GRB models.
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite
Resumo:
Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
Resumo:
Com a presente evolução das railguns na Marinha dos Estados Unidos da América e possível instalação em seus navios num futuro muito próximo, outras marinhas se seguirão. Creio que será do interesse da Marinha Portuguesa acompanhar esta evolução tecnológica, considerando as vantagens que advém da adoção deste tipo de armamento. Neste documento são abordados os princípios básicos subjacentes ao funcionamento da railgun, com principal foco nas questões eletrodinâmicas. Pretende-se adquirir familiaridade com este novo tipo de armamento através do estudo crítico dos seus princípios de funcionamento. O princípio básico de funcionamento de uma railgun, à primeira vista, parece bastante simples, à luz da aplicação imediata da expressão da força de Lorentz sobre um condutor percorrido por corrente elétrica. No entanto, tudo se torna mais complicado no caso de uma variação rápida dos parâmetros envolvidos (regime transitório), que exige uma análise mais aprofundada do comportamento da corrente, campos elétrico e magnético, e todos os materiais envolvidos neste sistema. Este trabalho envolveu ainda a construção de duas railguns, uma primeira de dimensões mais pequenas para ganhar familiaridade com o sistema, e uma última de dimensões de laboratório na qual foram feitos vários disparos para testar diferentes tipos de material e dimensões de projétil. Em suma, é demonstrado neste documento uma análise, no domínio do tempo, da distribuição espacial do campo eletromagnético, corrente elétrica e consequente fluxo de energia, complementados por uma parte experimental.
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator’s Chern number is the phase-winding number of the mass gap terms on the loop.We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field’s vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Resumo:
The work carried out is focused on the exploration of processes occurring in cement materials during sorption cycles by using Nuclear Magnetic Resonance (NMR) relaxometry. Long (months) and short (days-weeks) sorption cycles of cement materials were explored. The long cycle consists of around 6 months of drying and re-wetting cement samples of different sizes and water-to-cement (w/c) ratios in a homemade relative humidity (RH) chamber. Short cycles were performed by drying samples of different sizes and w/c ratios in the oven at 60 ˚C and re-wetting underwater. Different NMR techniques, such as one- and two-dimensional relaxometry and solid-signal analyses, were used to study the samples. Firstly, by the interpretation of quasi-continuous distributions of T2 relaxation time, we demonstrated that some reversible and irreversible changes concerning smaller porosity happened during the first sorption cycle. Secondly, using 2D NMR and a new 2D NMR inversion algorithm we showed preliminary results on the cement T1-T2 maps. Data obtained during sorption processes indicated possible water exchange between different pore populations inside the cement samples. Thirdly, the solid structure of cement samples was qualitatively investigated with T1 measurements and, as far as we know, for the first time interpreted with the Pake-Doublet theory. Changes in the solid structure were observed. Precisely variations of the amount of Ettringite during drying/wetting were proposed to take place. Finally, a work on NMR single-sided equipment design for in situ cement investigation was shown. The multi-cubic-blocks magnet structure design was performed using different specific CAD software, and the magnetic fields generated by RF coils of different geometries were investigated using a customized Matlab script. The single-sided NMR instrument equipped with the designed single-sided magnet and coil was built by the ERICA partner company MR Solutions (Abingdon, UK), and the preliminary results resultsated the correctness of the developed design.
Resumo:
Turbulence introduced into the intra-cluster medium (ICM) through cluster merger events transfers energy to non-thermal components (relativistic particles and magnetic fields) and can trigger the formation of diffuse synchrotron radio sources. Owing to their steep synchrotron spectral index, such diffuse sources can be better studied at low radio frequencies. In this respect, the LOw Frequency ARray (LOFAR) is revolutionizing our knowledge thanks to its unprecedented resolution and sensitivity below 200 MHz. In this Thesis we focus on the study of radio halos (RHs) by using LOFAR data. In the first part of this work we analyzed the largest-ever sample of galaxy clusters observed at radio frequencies. This includes 309 Planck clusters from the Second Data Release of the LOFAR Two Metre Sky Survey (LoTSS-DR2), which span previously unexplored ranges of mass and redshift. We detected 83 RHs, half of which being new discoveries. In 140 clusters we lack a detected RH; for this sub-sample we developed new techniques to derive upper limits to their radio powers. By comparing detections and upper limits, we carried out the first statistical analysis of populations of clusters observed at low frequencies and tested theoretical formation models. In the second part of this Thesis we focused on ultra-steep spectrum radio halos. These sources are almost undetected at GHz frequencies, but are thought to be common at low frequencies. We presented LOFAR observations of two interesting clusters hosting ultra-steep spectrum radio halos. With complementary radio and X-ray observations we constrained the properties and origin of these targets.
Resumo:
The focus of the thesis is the application of different attitude’s determination algorithms on data evaluated with MEMS sensor using a board provided by University of Bologna. MEMS sensors are a very cheap options to obtain acceleration, and angular velocity. The use of magnetometers based on Hall effect can provide further data. The disadvantage is that they have a lot of noise and drift which can affects the results. The different algorithms that have been used are: pitch and roll from accelerometer, yaw from magnetometer, attitude from gyroscope, TRIAD, QUEST, Magdwick, Mahony, Extended Kalman filter, Kalman GPS aided INS. In this work the algorithms have been rewritten to fit perfectly with the data provided from the MEMS sensor. The data collected by the board are acceleration on the three axis, angular velocity on the three axis, magnetic fields on the three axis, and latitude, longitude, and altitude from the GPS. Several tests and comparisons have been carried out installing the electric board on different vehicles operating in the air and on ground. The conclusion that can be drawn from this study is that the Magdwich filter is the best trade-off between computational capabilities required and results obtained. If attitude angles are obtained from accelerometers, gyroscopes, and magnetometer, inconsistent data are obtained for cases where high vibrations levels are noticed. On the other hand, Kalman filter based algorithms requires a high computational burden. TRIAD and QUEST algorithms doesn’t perform as well as filters.
Resumo:
Galaxy clusters and groups are the most massive bounded structures and the knots of the large-scale structure of the Universe. These structures reside in dark matter haloes, hosting tens to hundreds of galaxies and they are filled with hot and rarefied gas. Radio Galaxies are a peculiar class of galaxies with a luminosity in the radio band up to 10^46 erg/s between 10 MHz and 100 GHz. These galaxies are a subclass of AGN in which there is accretion on the Super Massive Black Hole. The accretion generates jets of relativistic particles and magnetic fields which lose energy through synchrotron radiation, best observable at radio frequencies. The study of the spectral ageing of the AGN plasma is fundamental to understand its evolution, interaction with the environment and to constrain the AGN duty cycle. n this thesis, we have investigated the duty cycle of the nearby remnant radio galaxy NGC 6086, located in the centre of the galaxy group Abell 2162. We have made major steps forward thanks to the new high-sensitivity interferometers in the low-frequency radio band. We have detected for the first time three filaments of emission and a second couple of lobes. We have performed an integrated and resolved analysis on the previously known inner lobes, the new filaments and the older outer lobes. We have performed an age estimate of the two pairs of lobes to give constraints on the duty cycle of the source and an estimate of its active time.