974 resultados para VT ablation
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
This study investigated whether subablative-pulsed CO(2) laser (10.6 mu m) irradiation, using fluences lower than 1 J/cm(2), was capable of reducing enamel acid solubility. Fifty-one samples of bovine dental enamel were divided into three groups: control group, which was not irradiated (CG); group laser A (LA) irradiated with 0.3 J/cm ; and group laser B (LB) irradiated with 0.7 J/cm(2). After irradiation, the samples were subjected to demineralization in an acetate buffer solution and were then analyzed by SEM. A finite-element model was used to calculate the temperature increase. The calcium and phosphorous content in the demineralization solution were measured with an ICP-OES. ANOVA and the t-test pairwise comparison (p < 0.016) revealed that LB showed significantly lower mean Ca and P content values in the demineralization solution than other groups. A reduction in the enamel solubility can be obtained with pulsed CO(2) laser irradiation (0.7 J/cm(2), 135 mJ/pulse, 74 Hz, 100 mu s) without any surface photomodification and a less than 2 degrees C temperature increase at a 3-mm depth from the surface.
Resumo:
Dentin irradiation with erbium lasers has been reported to alter the composite resin bond to this treated surface. There is still a lack of studies reporting the effect of erbium lasers on dentin organic content and elucidating how laser treatment could interfere in the quality of the resin-dentin interface. This study aimed to evaluate the effect of erbium laser irradiation on dentin morphology and microtensile bond strength (lTBS) of an adhesive to dentin. Seventy-two dentin disks were divided into nine groups (n = 8): G1-Control (600-grit SiC paper); Er:YAG groups: G2-250 mJ/4 Hz; G3-200 mJ/4 Hz; G4-180 mJ/10 Hz; G5-160 mJ/10 Hz; Er, Cr:YSGG groups: G6-2 W/20 Hz; G7-2.5 W/20 Hz; G8-3 W/20 Hz; G9-4 W/20 Hz. Specimens were processed for cross-sectional analysis by scanning electron microscopy (SEM) (n = 3), transmission electron microscopy (TEM) (n = 2), and adhesive interface (n = 3). Forty-five dentin samples (n = 5) were restored and submitted to lTBS testing. ANOVA (alpha = 5%) revealed that G1 presented the highest lTBS values and irradiated groups did not differ from each other. TEM micrographs showed a superficial layer of denatured collagen fibrils. For SEM micrographs, it was possible to verify the laser effects extending to dentin subsurface presenting a rough aspect. Cross-sectional dentin micrographs of this hybridized surface revealed a pattern of modified tags with ringlike structures around it. This in vitro study showed that erbium laser irradiation interacts with the dental hard tissue resulting in a specific morphological pattern of dentin and collagen fibrils that negatively affected the bond strength to composite resin. Microsc. Res. Tech. 74:720-726, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p < 0.05). The Tukey test showed that in the cervical third, GN presented means of dye penetration statistically significantly lower than all of the other groups. In the middle third, GE and GD showed statistically higher dye penetration means than GC and GN. SEM analysis showed melted surfaces for GN, clean wall surfaces with open dentinal tubules for GE, and mostly obliterated dentinal tubules for GD. Er:YAG (2,094 nm) laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.
Resumo:
The aim of this in vitro study was to investigate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation on dentinal collagen by transmission electron microscopy and to analyze the resin-dentin interface by scanning electron microscopy. A tensile bond strength test was also applied. Specimens from 69 sound human third molars were randomly divided into three groups: control (no laser), and two irradiated groups, laser 250 (250 mJ/2 Hz) and laser 400 (400 mJ/4 Hz). Then, specimens were restored with two adhesive systems, an etch-and-rinse or a self-etch system. Although ultrastructural examination showed a modified surface in the irradiated dentin, there was no statistical difference in bond strength values between the laser groups and controls (P < 0.05). In conclusion, the use of Er:YAG laser for ablating human dentin did not alter the main adhesion parameters when compared with those obtained by conventional methods, thus reinforcing its use in restorative dentistry.
Resumo:
Objectives: The aim of this study was to assess the influence of irradiation distance and the use of cooling in the Er:YAG laser efficacy in preventing enamel demineralization. Methods: 84 enamel blocks were randomly assigned to seven groups (n = 12): G1: control group - no treatment, G2-G7: experimental groups treated with Er:YAG laser (80 mJ/2 Hz) at different irradiation distances with or without cooling: G2: 4 mm/2 mL; G3: 4 mm/no cooling; G4: 8 mm/2 mL; G5: 8 mm/no cooling; G6: 16 mm/2 mL; G7: 16 mm/no cooling. The samples were submitted to an in vitro pH cycles for 14 days. Next, the specimens were sectioned in sections of 80-100 mu m in thickness and the demineralization patterns of prepared slices were assessed using a polarized light microscope. Three samples from each group were analyzed with scanning electronic microscopy. Analysis of variance and the Fisher test were performed for the statistical analysis of the data obtained from the caries-lesion-depth measurements (CLDM) (alpha = 5%). Results: The control group (CLDM = 0.67 mm) was statistically different from group 2 (CLDM = 0.42 mm), which presented a smaller lesion depth, and group 6 (0.91 mm), which presented a greater lesion depth. The results of groups 3 (CLDM = 0.74 mm), 4 (CLDM = 0.70 mm), 5 (CLDM = 0.67 mm) and 7 (CLDM = 0.89 mm) presented statistical similarity. The scanning electronic microscopy analysis showed ablation areas in the samples from groups 4, 5, 6 and 7, and a slightly demineralized area in group 2. Conclusions: It was possible to conclude that Er:YAG laser was efficient in preventing enamel demineralization at a 4-mm irradiation distance using cooling. (C) 2010 Elsevier Ltd. All rights reserved.
Effect of erbium:yttrium-aluminum-garnet laser energies on superficial and deep dentin microhardness
Resumo:
This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 A mu m, 40 A mu m, 60 A mu m, 80 A mu m, 100 A mu m, and 200 A mu m) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher`s tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 A mu m with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.
Resumo:
Considering the increase in esthetic restorative materials and need for improvement in unsatisfactory restoration substitution with minimal inadvertent removal of healthy tissues, this study assessed the efficacy of erbium:yttrium-aluminum-garnet (Er:YAG) laser for composite resin removal and the influence of pulse repetition rate on the morphological analyses of the cavity by scanning electron microscope. Composite resin fillings were placed in cavities (1.0 mm deep) prepared in bovine teeth, and the 75 specimens were randomly assigned to five groups according to the technique used for composite filling removal (high-speed diamond bur, group I, as a control, and Er:YAG laser, 250 mJ output energy and 80 J/cm(2) energy density, using different pulse repetition rates: group II, 2 Hz; group III, 4 Hz; group IV, 6 Hz; group V, 10 Hz). After the removal, the specimens were split in the middle, and we analyzed the surrounding and deep walls to check for the presence of restorative material. The estimation was qualitative. The surfaces were examined with a scanning electron microscope. The results revealed that the experimental groups presented bigger amounts of remaining restorative material. The scanning electron microscopy (SEM) analyses showed irregularities of the resultant cavities of the experimental groups that increased proportionally with increase in repetition rate.
Resumo:
Objective: To examine the effects of iron deficiency and its treatment by iron supplementation or a high iron diet on fatigue and general health measures in women of childbearing age. Design: Randomised controlled trial to compare supplement and dietary treatment of iron deficiency. Subjects: 44 iron deficient (serum ferritin < 15 mug/L or serum ferritin 15-20 mug/L, plus two of the following: serum iron < 10 mu mol/L, total iron binding capacity > 68 mu mol/L or transferrin saturation < 15%) and 22 iron replete (hemoglobin greater than or equal to 120 g/L and serum ferritin > 20 mug/L) women 18 to 50 years of age were matched for age and parity. Interventions: Iron deficient women were randomly allocated to either iron supplementation or a high iron diet for 12 weeks. Measures of Outcome: Iron deficient and iron replete participants had iron studies performed and completed the Piper Fatigue Scale (PFS) and the SF-36 general health and well-being questionnaire at baseline (TO), following the 12 week intervention (TI) and again after a six-month non-intervention phase (T2). The SF-36 includes measures of physical (PCS) and mental (MCS) health and vitality (VT). Results: MCS and VT scores were lower and PFS scores were higher for iron deficient women (diet and supplement groups) than iron replete women at baseline. Both intervention groups showed similar improvements in MCS, VT and PFS scores during the intervention phase, but mean increases in serum ferritin were greater in the supplement than the diet group. PCS scores were not related to iron status. Conclusions: Treatment of iron deficiency with either supplementation or a high iron diet results in improved mental health and decreased fatigue among women of childbearing age.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
A new method to extract MOSFET's threshold voltage VT by measurement of the gate-to-substrate capacitance C-gb of the transistor is presented. Unlike existing extraction methods based on I-V data, the measurement of C-gb does not require de drain current to now between drain and source thus eliminating the effects of source and drain series resistance R-S/D, and at the same time, retains a symmetrical potential profile across the channel. Experimental and simulation results on devices with different sizes are presented to justify the proposed method.
Resumo:
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons. the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice. primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from other studies indicating that mitral cells do not play a major role in the convergence and targeting of primary olfactory axons in the olfactory bulb. (C) 2002 Elsevier Science B.V. All rights reserved.