972 resultados para VEHICULAR NETWORKS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic volumes represented on this map are annual average daily traffic volumes between major traffic generators: highway junctions and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple model of communication in networks with hierarchical branching. We analyze the behavior of the model from the viewpoint of critical systems under different situations. For certain values of the parameters, a continuous phase transition between a sparse and a congested regime is observed and accurately described by an order parameter and the power spectra. At the critical point the behavior of the model is totally independent of the number of hierarchical levels. Also scaling properties are observed when the size of the system varies. The presence of noise in the communication is shown to break the transition. The analytical results are a useful guide to forecasting the main features of real networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random scale-free networks have the peculiar property of being prone to the spreading of infections. Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free degree distribution with diverging second moment is a sufficient condition to have null epidemic threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present result is related to the divergence of the average nearest neighbors degree, enforced by the degree detailed balance condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a theoretical approach to percolation in random clustered networks. We find that, although clustering in scale-free networks can strongly affect some percolation properties, such as the size and the resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide variety of real scale-free networks which shows a high level of transitivity. Our findings are in good agreement with numerical simulations.