973 resultados para UV-Vis-IR spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-doped alumina powders were synthesized by means of the polymeric precursor method to obtain ceramic pigments. The effect of different contents of Co2+ on phase transition gamma to alpha-Al2O3 and appearing of CoAl2O4 spinel were studied by means of X-ray diffraction. A partial phase diagram of the system CoAl2O3 was proposed from these data by means of determination of the percentages of these phases according to the calcining temperature. Critical particle size to phase transition was determined by means of calculations of crystallite size and determination of superficial area through the BET method. UV-vis spectroscopy of the samples allow to compare the band shift with the phase transition. Besides, a study of thermal stability and intensity of the blue coloration of the synthesized powders with the presence of cobalt in relation to the calcining temperature was accomplished and compared to the phase transition. The results show that the higher blue color intensity was obtained for the powders with Co-doped gamma-Al2O3 closest of phase transition to alpha-Al2O3 + CoAl2O4. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular structures of polyaniline (PANI) and vanadium oxide (V2O5) have been assembled via the electrostatic layer-by-layer (LBL) technique. The films were characterized by vibrational analyses which indicated that the interactions between the two components lead to different properties in the films when compared to sol-gel films. of the neat compounds. In particular, using surface enhanced Raman scattering we were able to probe LBL film properties that depend on which material comprises the topmost layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cr-doped xerogels were obtained by sol-gel process from the acid-catalyzed and ultrasound-stimulated hydrolysis of tetraethoxysilane (TEOS) with addition of CrCl3.6H(2)O in water solution during the liquid step of the process. The gels were aged immersed in different pH solutions for about 30 days, after that they were allowed to dry. The samples were annealed at temperatures ranging from 40 to 600degreesC and analyzed by UV-visible absorption spectroscopy. Cr3+ is the preferable oxidation state of the chromium ion in the gels annealed up to 250-300degreesC, in the case of aging in solutions of pH=5 and 11. A high UV absorption below similar to320 nm, due to the host gel, and different absorption bands, depending on the temperature, due to the chromium ion were observed in the xerogels at temperatures below similar to250degreesC, in the case of aging in solutions of pH=1 and 2. These absorption bands have not been assigned. Above 300degreesC up to 600degreesC, Cr5+, and possibly Cr6+, are the preferable oxidation states of the chromium ion independent of the pH of the aging solution, so the xerogels turn to a yellowish appearance in all cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polymeric precursor method was successfully used to synthesize CoxZn7-xSbO12 (x = 0-7) powders. Pigments were evaluated using colorimetry, X-ray diffraction, UV-vis and infrared spectroscopy. The optical band gap values vary with the Co2+ substitution. These results suggest that the concomitant presence of Co and Zn in the spinel lattice leads to the rupture of the Vegard law, as well as other properties of the studied system, such as unit cell volume. The Co-richer samples display a higher absorbance than the Co-lean samples. The high absorption of the Co7Sb2O12 sample at most of the visible region makes this compound a candidate for a black pigment. It was shown that color depends on the site where the chromophore ion is located, in agreement with the ligand field theory. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion-exchange resin (Amberlyte IR - 120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion-controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for quinoline (-1.95 V) and pyridine (-2.52 V) vs. Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L-1 and a limit of detection (LOD) of 5.05 and 0.25 mu g L-1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0 +/- 0.3 and 33.0 +/- 0.7 mg L-1 and in diesel samples yielded 80.3 +/- 0.2 and 131 +/- 0.4 mg L-1, respectively. Spike recoveries were 94.4 +/- 0.3% and 10 +/- 0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV-vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioglycolic acid-capped Use quantum dots (QDs) were assembled on glass substrates with two distinct polyelectrolytes, viz poly(allylamine hydrochloride) (PAH) and poly(amidoamine) (PAMAM), generation 4 dendrimer, via the layer-by-layer (LbL) technique. Films containing up to 30 polyelectrolyte/QD bilayers were prepared. The growth of the multilayers was monitored with UV-vis spectroscopy, which showed an almost linear increase in the absorbance of the 2.8 nm QDs at 535 nm with the number of deposited bilayers. AFM measurements estimated a film thickness of 3 nm per bilayer for the PAH/Cdse films. The adsorption process and the optical properties of the PAMAM/CdSe LbL films were further analyzed layer-by-layer using surface plasmon resonance (SPR), from which a thickness of 3.2 nm was found for a PAMAM/CdSe bilayer. Photoluminescence measurements revealed higher photooxidation of the quantum dots in PAH/CdSe than in PAMAM/CdSe films. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dimeric compound [Pd(bzan)(mu-OOCCH3)](2) (1) (bzan=N-benzylideneaniline) reacts with KX, in methanol/acetone (2:1), affording the analogous dimeric pseudohalogen-bridged species [Pd(bzan)(mu-X)](2) [X=NCO(2), SCN(3), CN(4)]. The compounds were characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. IR data for 2-4 showed bands typical of coordinated pseudohalogen ligands clearly indicating the occurrence of the exchange reaction. Their thermal behaviour was investigated and suggested that their stability is influenced by the bridging ligand. The thermal stability decreased in the order [Pd(bzan)(mu-CN)](2)>[Pd(bzan)(mu-SCN)](2)>[Pd(bzan)(mu-OOCCH3)](2)>[Pd(bzan)(mu-NCO)](2). X-ray results showed the formation of Pddegrees as final decomposition product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured polyaniline-modified electrodes were fabricated via the electrostatic layer-by-layer (LbL) technique where polyaniline (PANI) was assembled with one of three tetrasulfonated metallic phthalocyanines, viz. iron (FeTsPc), nickel (NiTsPc) and copper (CuTsPc). The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the 800 run absorption band due to PANI. Infrared spectroscopy in the transmission mode suggested specific interactions between PANI and the phthalocyanines, such as those between SO3- groups from the phthalocyanines and the protonated NH group from PANI. The films were employed to detect dopamine (DA) using cyclic voltammetry. In the presence of dopamine the PANI-based LbL films showed additional redox peaks at ca. 230 and 190 mV the oxidation peak increased linearly with the concentration of DA in the electrolytic solution. Films comprising PANI/FeTsPc were able to distinguish between DA and ascorbic acid (AA), which acts as a natural interferent in biological fluids. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the catalytic intermediates for Fe(TPP)(+), Fe(TDCPP)(+), Fe(TFPP)(+), Mn(TPP)(+) and Mn(TDCPP)(+) supported on imidazole propyl gel with PhIO were studied by UV-Vis spectrophotometry. For Fe(TPP)+ and Fe(TFPP)+ the study was also monitored by EPR spectroscopy. The active catalytic intermediate observed for FeP-IPG is the ore-iron (IV) porphyrin pi cation radical Fe-IV(O)P.+, which is evidenced by a decrease in the intensity of the Sorer band. The total re-establishment of the initial Soret band intensity for Fe(TDCPP)IPG and Fe(TFPP)IPG at the end of the reaction shows that they were completely recovered, There are advantages in following the reactions of PNO with unsubstituted Fe(TPP)(+) and Mn(TPP)(+) on IPG by UV-Vis, since they were slower and allowed to 'see' the intermediate species without spectral interference from the recovered catalyst, since they are only partially recovered. With Fe(TPP)IPG, a band at 580 nm was detected at the beginning of the reaction, indicating the possible formation of a Fe-OIPh intermediate. Supporting Mn(TPP)(+) on IPG leads to a shift of band V from 478 nm to 488 nm. In the reaction of MnP-IPG with PhIO, we observed the disappearance of the band in 488 nm and the appearance of a band in 412 nm, which corresponds to the active catalytic intermediate Mn-V(O)P as the main component, as is expected for a more efficient system. The recovery of supported catalysts observed in these experiments was further proved with the possibility of their successive recyclings in cyclohexane oxidation reactions by PhIO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes (NH4)(2)[ MoO2( C2H2O3)(2)]center dot H2O, (NH4)(2)[MoO2(C8H6O3)(2)] and (NH4)(2) [MoO3(C4H4O6)]center dot H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X- ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO- is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the alpha-carbon. The glycolate molybdenum complexes with general formula M-2[MoO2(C2H2O3)(2)]center dot nH(2)O, where M is an alkali metal and n=1 or 1/2, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV- radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A perylene derivative, n-(n-butyl)-n'-(4-aminobutyl) perylene-3,4,9,10-tetracarboxylic acid diimide (simplified as nBu-PTCD-(CH2)(4)-NH2) has been chosen as the target molecule for studies involving single molecule detection (SMD) using Raman scattering. The enhancement of the Raman signal is the result of the multiplicative effects of two phenomena, resonance Raman scattering (RRS) and surface-enhanced Raman scattering (SERS), which leads to the resulting surface-enhanced resonance Raman scattering (SERRS) process. The SERRS spectra from a single molecule have been collected using both silver and gold colloids. The SMD detection of the fundamental vibrational frequencies characteristic of nBu-PTCD-(CH2)(4)-NH2 is complemented with the detection of some overtones and combinations from ring stretching modes at the single molecule level. The background characterization of the ensemble vibrational spectroscopy of the target perylene and its SERRS is also presented, which includes the UV-vis absorption, experimental and calculated Raman scattering and infrared absorption, and molecular organization using reflection-absorption infrared spectroscopy (RAIRS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the effect from the solution concentration on aggregation in layer-by-layer (LBL) films of poly(omethoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid). Films are adsorbed on hydrophilized glass substrates and characterized with UV-Vis spectroscopy and atomic force microscopy. The formation of aggregates is favored in more concentrated solutions, leading to an increase in the diameter of the domains. This is caused by stronger polymer-polymer interactions under high concentrations. The size of POMA aggregates in solution is estimated to be larger than in LBL films, which is surprising because one should expect aggregates from solution to coalesce into larger aggregates in the deposited films. This unexpected result may be explained by a swelling effect of aggregates in the aqueous POMA solutions, consistent with other reports in the literature which consider the aggregates in solution to be made up of smaller aggregates. Upon adsorption on a solid substrate to form the LBL film, a molecular reorganization probably takes place, resulting in smaller aggregates. It is also found that the size distribution of the POMA domains in the LBL films is determined by the concentration of the solution. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.