928 resultados para Transient
Resumo:
Introduction The most commonly used method in neonatal hearing screening programs is transient evoked otoacoustic emissions in the first stage of the process. There are few studies comparing transient evoked otoacoustic emissions with distortion product, but some authors have investigated the issue. Objective To correlate the results of transient evoked and distortion product otoacoustic emissions in a Brazilian maternity hospital. Methods This is a cross-sectional, comparative, and prospective study. The study included 579 newborns, ranging from 6 to 54 days of age, born in a low-risk maternity hospital and assessed for hearing loss. All neonates underwent hearing screening by transient evoked and distortion product otoacoustic emissions. The results were analyzed using the Spearman correlation test to relate the two procedures. Results The pass index on transient evoked otoacoustic emissions was 95% and on distortion product otoacoustic emissions was 91%. The comparison of the two procedures showed that 91% of neonates passed on both procedures, 4.5% passed only on transient evoked otoacoustic emissions, 0.5% passed only on distortion product otoacoustic emissions, and 4% failed on both procedures. The inferential analysis showed a significant strong positive relationship between the two procedures. Conclusion The failure rate was higher in distortion product otoacoustic emissions when compared with transient evoked; however, there was correlation between the results of the procedures.
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
Degeneration of tendon tissue is a common cause of tendon dysfunction with the symptoms of repeated episodes of pain and palpable increase of tendon thickness. Tendon mechanical properties are directly related to its physiological composition and the structural organization of the interior collagen fibers which could be altered by tendon degeneration due to overuse or injury. Thus, measuring mechanical properties of tendon tissue may represent a quantitative measurement of pain, reduced function, and tissue health. Ultrasound elasticity imaging has been developed in the last two decades and has proved to be a promising tool for tissue elasticity imaging. To date, however, well established protocols of tendinopathy elasticity imaging for diagnosing tendon degeneration in early stages or late stages do not exist. This thesis describes the re-creation of one dynamic ultrasound elasticity imaging method and the development of an ultrasound transient shear wave elasticity imaging platform for tendon and other musculoskeletal tissue imaging. An experimental mechanical stage with proper supporting systems and accurate translating stages was designed and made. A variety of high-quality tissue-mimicking phantoms were made to simulate homogeneous and heterogeneous soft tissues as well as tendon tissues. A series of data acquisition and data processing programs were developed to collect the displacement data from the phantom and calculate the shear modulus and Young’s modulus of the target. The imaging platform was found to be capable of conducting comparative measurements of the elastic parameters of the phantoms and quantitatively mapping elasticity onto ultrasound B-Mode images. This suggests the system has great potential for not only benefiting individuals with tendinopathy with an earlier detection, intervention and better rehabilitation, but also for providing a medical tool for quantification of musculoskeletal tissue dysfunction in other regions of the body such as the shoulder, elbow and knee.
Resumo:
Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.
Resumo:
Light-emitting electrochemical cells (LECs) made of electroluminescent polymers were studied by d.c. and transient current-voltage and luminance-voltage measurements to elucidate the operation mechanisms of this kind of device. The time and external voltage necessary to form electrical double layers (EDLs) at the electrode interfaces could be determined from the results. In the low-and intermediate-voltage ranges (below 1.1 V), the ionic transport and the electronic diffusion dominate the current, being the device operation better described by an electrodynamic model. For higher voltages, electrochemical doping occurs, giving rise to the formation of a p-i-n junction, according to an electrochemical doping model. Copyright (C) EPLA, 2012
Resumo:
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate-or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate-or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.
Resumo:
Objective To determine whether activation of transient receptor potential vanilloid 4 (TRPV-4) induces inflammation in the rat temporomandibular joint (TMJ), and to assess the effects of TRPV-4 agonists and proinflammatory mediators, such as a protease-activated receptor 2 (PAR-2) agonist, on TRPV-4 responses. Methods Four hours after intraarticular injection of carrageenan into the rat joints, expression of TRPV-4 and PAR-2 in trigeminal ganglion (TG) neurons and in the TMJs were evaluated by real-time reverse transcriptionpolymerase chain reaction and immunofluorescence, followed by confocal microscopy. The functionality of TRPV-4 and its sensitization by a PAR-2activating peptide (PAR-2AP) were analyzed by measuring the intracellular Ca2+ concentration in TMJ fibroblast-like synovial cells or TG neurons. Plasma extravasation, myeloperoxidase activity, and the head-withdrawal threshold (index of mechanical allodynia) were evaluated after intraarticular injection of selective TRPV-4 agonists, either injected alone or coinjected with PAR-2AP. Results In the rat TMJs, TRPV-4 and PAR-2 expression levels were up-regulated after the induction of inflammation. Two TRPV-4 agonists specifically activated calcium influx in TMJ fibroblast-like synovial cells or TG neurons. In vivo, the agonists triggered dose-dependent increases in plasma extravasation, myeloperoxidase activity, and mechanical allodynia. In synovial cells or TG neurons, pretreatment with PAR-2AP potentiated a TRPV-4 agonistinduced increase in [Ca2+]i. In addition, TRPV-4 agonistinduced inflammation was potentiated by PAR-2AP in vivo. Conclusion In this rat model, TRPV-4 is expressed and functional in TG neurons and synovial cells, and activation of TRPV-4 in vivo causes inflammation in the TMJ. Proinflammatory mediators, such as PAR-2 agonists, sensitize the activity of TRPV-4. These results identify TRPV-4 as an important signal of inflammation in the joint.
Resumo:
The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety-and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB1 and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB1-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB1-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB1 and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders. Neuropsychopharmacology (2012) 37, 478-486; doi:10.1038/npp.2011.207; published online 21 September 2011
Resumo:
The circulation at the Eastern Brazilian Shelf (EBS), near 13 degrees S, is discussed in terms of the currents and hydrography, associating large-scale circulation, transient and local processes to establish a regional picture of the EBS circulation. The results show that the circulation within the continental shelf and slope region is strongly affected by the seasonal changes in the wind field and mesa/large-scale circulation. Transient processes associated to the passage of Cold Front systems or meso-scale activity and the presence of a local canyon add more complexity to the system. During the austral spring and summer seasons, the prevailing upwelling favorable winds blowing from E-NE were responsible for driving southwestward shelf currents. The interaction with the Western Boundary Current (the Brazil Current), especially during summer, was significant and a considerable vertical shear in the velocity field was observed at the outer shelf. The passage of a Cold Front system during the springtime caused a complete reversal of the mean flow and contributed to the deepening of the Mixed Layer Depth (MLD). In addition, the presence of Salvador Canyon, subject to an upwelling favorable boundary current, enhanced the upwelling system, when compared to the upwelling observed at the adjacent shelf. During the austral autumn and winter seasons the prevailing downwelling favorable winds blowing from the SE acted to total reverse the shelf circulation, resulting in a northeastward flow. The passage of a strong Cold Front, during the autumn season, contributed not only to the strengthening of the flow but also to the deepening of the MLD. The presence of the Salvador Canyon, when subject to a downwelling favorable boundary current, caused an intensification of the downwelling process. Interestingly, the alongshore velocity at the shelf region adjacent to the head of the canyon was less affected when compared to the upwelling situation.
Resumo:
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.
Resumo:
Mediastinal lymphadenomegaly secondary to hypervolemia is an underdiagnosed tomographic finding. Herein we describe, in a patient with normal cardiac function, findings of pulmonary congestion associated to lymph node enlargement. The nephrotic syndrome causing hypoalbuminemia, low plasma colloid osmotic pressure and augmented transcapillary fluid leakage was the probable cause of the radiological findings.
Resumo:
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.