899 resultados para Transformada de Wavelet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La actividad cerebral puede ser monitoreada mediante la electroencefalografía y utilizada como un indicador bioeléctrico. Este articulo muestra como un dispositivo de bajo costo y fácil acceso puede utilizarse para el desarrollo de aplicaciones basadas en interfaces cerebro-computador (BCI). Los resultados obtenidos muestran que el dispositivo MindWave puede efectivamente utilizarse para la adquisición de señales relacionadas a la actividad cerebral en diversas actividades cerebrales bajo la influencia de diversos estímulos. Se propone además el uso de la transformada Wavelet para el acondicionamiento de las señales EEG con el objetivo de utilizar algoritmos de inteligencia artificial y técnicas de reconocimiento de patrones para distinguir respuestas cerebrales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we compare Grapholita molesta Busck (Lepidoptera: Tortricidae) populations originated from Brazil, Chile, Spain, Italy and Greece using power spectral density and phylogenetic analysis to detect any similarities between the population macro- and the molecular micro-level. Log-transformed population data were normalized and AR(p) models were developed to generate for each case population time series of equal lengths. The time-frequency/scale properties of the population data were further analyzed using wavelet analysis to detect any population dynamics frequency changes and cluster the populations. Based on the power spectral of each population time series and the hierarchical clustering schemes, populations originated from Southern America (Brazil and Chile) exhibit similar rhythmic properties and are both closer related with populations originated from Greece. Populations from Spain and especially Italy, have higher distance by terms of periodic changes on their population dynamics. Moreover, the members within the same cluster share similar spectral information, therefore they are supposed to participate in the same temporally regulated population process. On the contrary, the phylogenetic approach revealed a less structured pattern that bears indications of panmixia, as the two clusters contain individuals from both Europe and South America. This preliminary outcome will be further assessed by incorporating more individuals and likely employed a second molecular marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.