892 resultados para Towards Seamless Integration of Geoscience Models and Data
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Orthotopic liver retransplantation (re-OLT) is highly controversial. The objectives of this study were to determine the validity of a recently developed United Network for Organ Sharing (UNOS) multivariate model using an independent cohort of patients undergoing re-OLT outside the United States, to determine whether incorporation of other variables that were incomplete in the UNOS registry would provide additional prognostic information, to develop new models combining data sets from both cohorts, and to evaluate the validity of the model for end-stage liver disease (MELD) in patients undergoing re-OLT. Two hundred eighty-one adult patients undergoing re-OLT (between 1986 and 1999) at 6 foreign transplant centers comprised the validation cohort. We found good agreement between actual survival and predicted survival in the validation cohort; 1-year patient survival rates in the low-, intermediate-, and high-risk groups (as assigned by the original UNOS model) were 72%, 68%, and 36%, respectively (P < .0001). In the patients for whom the international normalized ratio (INR) of prothrombin time was available, MELD correlated with outcome following re-OLT; the median MELD scores for patients surviving at least 90 days compared with those dying within 90 days were 20.75 versus 25.9, respectively (P = .004). Utilizing both patient cohorts (n = 979), a new model, based on recipient age, total serum bilirubin, creatinine, and interval to re-OLT, was constructed (whole model χ(2) = 105, P < .0001). Using the c-statistic with 30-day, 90-day, 1-year, and 3-year mortality as the end points, the area under the receiver operating characteristic (ROC) curves for 4 different models were compared. In conclusion, prospective validation and use of these models as adjuncts to clinical decision making in the management of patients being considered for re-OLT are warranted.
Resumo:
In this paper, we evaluate the performance of the 1- and 5-site models of methane on the description of adsorption on graphite surfaces and in graphitic slit pores. These models have been known to perform well in the description of the fluid-phase behavior and vapor-liquid equilibria. Their performance in adsorption is evaluated in this work for nonporous graphitized thermal carbon black, and simulation results are compared with the experimental data of Avgul and Kiselev (Chemistry and Physics of Carbon; Dekker: New York, 1970; Vol. 6, p 1). On this nonporous surface, it is found that these models perform as well on isotherms at various temperatures as they do on the experimental isosteric heat for adsorption on a graphite surface. They are then tested for their performance in predicting the adsorption isotherms in graphitic slit pores, in which we would like to explore the effect of confinement on the molecule packing. Pore widths of 10 and 20 angstrom are chosen in this investigation, and we also study the effects of temperature by choosing 90.7, 113, and 273 K. The first two are for subcritical conditions, with 90.7 K being the triple point of methane and 113 K being its boiling point. The last temperature is chosen to represent the supercritical condition so that we can investigate the performance of these models at extremely high pressures. We have found that for the case of slit pores investigated in this paper, although the two models yield comparable pore densities (provided the accessible pore width is used in the calculation of pore density), the number of particles predicted by the I-site model is always greater than that predicted by the 5-site model, regardless of whether temperature is subcritical or supercritical. This is due to the packing effect in the confined space such that a methane molecule modeled as a spherical particle in the I-site model would pack better than the fused five-sphere model in the case of the 5-site model. Because the 5-site model better describes the liquid- and solid-phase behavior, we would argue that the packing density in small pores is better described with a more detailed 5-site model, and care should be exercised when using the 1-site model to study adsorption in small pores.
Resumo:
The aim of this study was to apply multifailure survival methods to analyze time to multiple occurrences of basal cell carcinoma (BCC). Data from 4.5 years of follow-up in a randomized controlled trial, the Nambour Skin Cancer Prevention Trial (1992-1996), to evaluate skin cancer prevention were used to assess the influence of sunscreen application on the time to first BCC and the time to subsequent BCCs. Three different approaches of time to ordered multiple events were applied and compared: the Andersen-Gill, Wei-Lin-Weissfeld, and Prentice-Williams-Peterson models. Robust variance estimation approaches were used for all multifailure survival models. Sunscreen treatment was not associated with time to first occurrence of a BCC (hazard ratio = 1.04, 95% confidence interval: 0.79, 1.45). Time to subsequent BCC tumors using the Andersen-Gill model resulted in a lower estimated hazard among the daily sunscreen application group, although statistical significance was not reached (hazard ratio = 0.82, 95% confidence interval: 0.59, 1.15). Similarly, both the Wei-Lin-Weissfeld marginal-hazards and the Prentice-Williams-Peterson gap-time models revealed trends toward a lower risk of subsequent BCC tumors among the sunscreen intervention group. These results demonstrate the importance of conducting multiple-event analysis for recurring events, as risk factors for a single event may differ from those where repeated events are considered.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired. (c) 2005 Wiley-Liss, Inc.
Resumo:
Objective: To explore the use of epidemiological modelling for the estimation of health effects of behaviour change interventions, using the example of computer-tailored nutrition education aimed at fruit and vegetable consumption in The Netherlands. Design: The effects of the intervention on changes in consumption were obtained from an earlier evaluation study. The effect on health outcomes was estimated using an epidemiological multi-state life table model. input data for the model consisted of relative risk estimates for cardiovascular disease and cancers, data on disease occurrence and mortality, and survey data on the consumption of fruits and vegetables. Results: if the computer-tailored nutrition education reached the entire adult population and the effects were sustained, it could result in a mortality decrease of 0.4 to 0.7% and save 72 to 115 life-years per 100000 persons aged 25 years or older. Healthy life expectancy is estimated to increase by 32.7 days for men and 25.3 days for women. The true effect is likely to lie between this theoretical maximum and zero effect, depending mostly on durability of behaviour change and reach of the intervention. Conclusion: Epidemiological models can be used to estimate the health impact of health promotion interventions.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.
Resumo:
Background: Oral itraconazole (ITRA) is used for the treatment of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis (CF) because of its antifungal activity against Aspergillus species. ITRA has an active hydroxy-metabolite (OH-ITRA) which has similar antifungal activity. ITRA is a highly lipophilic drug which is available in two different oral formulations, a capsule and an oral solution. It is reported that the oral solution has a 60% higher relative bioavailability. The influence of altered gastric physiology associated with CF on the pharmacokinetics (PK) of ITRA and its metabolite has not been previously evaluated. Objectives: 1) To estimate the population (pop) PK parameters for ITRA and its active metabolite OH-ITRA including relative bioavailability of the parent after administration of the parent by both capsule and solution and 2) to assess the performance of the optimal design. Methods: The study was a cross-over design in which 30 patients received the capsule on the first occasion and 3 days later the solution formulation. The design was constrained to have a maximum of 4 blood samples per occasion for estimation of the popPK of both ITRA and OH-ITRA. The sampling times for the population model were optimized previously using POPT v.2.0.[1] POPT is a series of applications that run under MATLAB and provide an evaluation of the information matrix for a nonlinear mixed effects model given a particular design. In addition it can be used to optimize the design based on evaluation of the determinant of the information matrix. The model details for the design were based on prior information obtained from the literature, which suggested that ITRA may have either linear or non-linear elimination. The optimal sampling times were evaluated to provide information for both competing models for the parent and metabolite and for both capsule and solution simultaneously. Blood samples were assayed by validated HPLC.[2] PopPK modelling was performed using FOCE with interaction under NONMEM, version 5 (level 1.1; GloboMax LLC, Hanover, MD, USA). The PK of ITRA and OH‑ITRA was modelled simultaneously using ADVAN 5. Subsequently three methods were assessed for modelling concentrations less than the LOD (limit of detection). These methods (corresponding to methods 5, 6 & 4 from Beal[3], respectively) were (a) where all values less than LOD were assigned to half of LOD, (b) where the closest missing value that is less than LOD was assigned to half the LOD and all previous (if during absorption) or subsequent (if during elimination) missing samples were deleted, and (c) where the contribution of the expectation of each missing concentration to the likelihood is estimated. The LOD was 0.04 mg/L. The final model evaluation was performed via bootstrap with re-sampling and a visual predictive check. The optimal design and the sampling windows of the study were evaluated for execution errors and for agreement between the observed and predicted standard errors. Dosing regimens were simulated for the capsules and the oral solution to assess their ability to achieve ITRA target trough concentration (Cmin,ss of 0.5-2 mg/L) or a combined Cmin,ss for ITRA and OH-ITRA above 1.5mg/L. Results and Discussion: A total of 241 blood samples were collected and analysed, 94% of them were taken within the defined optimal sampling windows, of which 31% where taken within 5 min of the exact optimal times. Forty six per cent of the ITRA values and 28% of the OH-ITRA values were below LOD. The entire profile after administration of the capsule for five patients was below LOD and therefore the data from this occasion was omitted from estimation. A 2-compartment model with 1st order absorption and elimination best described ITRA PK, with 1st order metabolism of the parent to OH-ITRA. For ITRA the clearance (ClItra/F) was 31.5 L/h; apparent volumes of central and peripheral compartments were 56.7 L and 2090 L, respectively. Absorption rate constants for capsule (kacap) and solution (kasol) were 0.0315 h-1 and 0.125 h-1, respectively. Comparative bioavailability of the capsule was 0.82. There was no evidence of nonlinearity in the popPK of ITRA. No screened covariate significantly improved the fit to the data. The results of the parameter estimates from the final model were comparable between the different methods for accounting for missing data, (M4,5,6)[3] and provided similar parameter estimates. The prospective application of an optimal design was found to be successful. Due to the sampling windows, most of the samples could be collected within the daily hospital routine, but still at times that were near optimal for estimating the popPK parameters. The final model was one of the potential competing models considered in the original design. The asymptotic standard errors provided by NONMEM for the final model and empirical values from bootstrap were similar in magnitude to those predicted from the Fisher Information matrix associated with the D-optimal design. Simulations from the final model showed that the current dosing regimen of 200 mg twice daily (bd) would provide a target Cmin,ss (0.5-2 mg/L) for only 35% of patients when administered as the solution and 31% when administered as capsules. The optimal dosing schedule was 500mg bd for both formulations. The target success for this dosing regimen was 87% for the solution with an NNT=4 compared to capsules. This means, for every 4 patients treated with the solution one additional patient will achieve a target success compared to capsule but at an additional cost of AUD $220 per day. The therapeutic target however is still doubtful and potential risks of these dosing schedules need to be assessed on an individual basis. Conclusion: A model was developed which described the popPK of ITRA and its main active metabolite OH-ITRA in adult CF after administration of both capsule and solution. The relative bioavailability of ITRA from the capsule was 82% that of the solution, but considerably more variable. To incorporate missing data, using the simple Beal method 5 (using half LOD for all samples below LOD) provided comparable results to the more complex but theoretically better Beal method 4 (integration method). The optimal sparse design performed well for estimation of model parameters and provided a good fit to the data.
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
Foley [J. Opt. Soc. Am. A 11 (1994) 1710] has proposed an influential psychophysical model of masking in which mask components in a contrast gain pool are raised to an exponent before summation and divisive inhibition. We tested this summation rule in experiments in which contrast detection thresholds were measured for a vertical 1 c/deg (or 2 c/deg) sine-wave component in the presence of a 3 c/deg (or 6 c/deg) mask that had either a single component oriented at -45° or a pair of components oriented at ±45°. Contrary to the predictions of Foley's model 3, we found that for masks of moderate contrast and above, threshold elevation was predicted by linear summation of the mask components in the inhibitory stage of the contrast gain pool. We built this feature into two new models, referred to as the early adaptation model and the hybrid model. In the early adaptation model, contrast adaptation controls a threshold-like nonlinearity on the output of otherwise linear pathways that provide the excitatory and inhibitory inputs to a gain control stage. The hybrid model involves nonlinear and nonadaptable routes to excitatory and inhibitory stages as well as an adaptable linear route. With only six free parameters, both models provide excellent fits to the masking and adaptation data of Foley and Chen [Vision Res. 37 (1997) 2779] but unlike Foley and Chen's model, are able to do so with only one adaptation parameter. However, only the hybrid model is able to capture the features of Foley's (1994) pedestal plus orthogonal fixed mask data. We conclude that (1) linear summation of inhibitory components is a feature of contrast masking, and (2) that the main aftereffect of spatial adaptation on contrast increment thresholds can be assigned to a single site. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Keyword identification in one of two simultaneous sentences is improved when the sentences differ in F0, particularly when they are almost continuously voiced. Sentences of this kind were recorded, monotonised using PSOLA, and re-synthesised to give a range of harmonic ?F0s (0, 1, 3, and 10 semitones). They were additionally re-synthesised by LPC with the LPC residual frequency shifted by 25% of F0, to give excitation with inharmonic but regularly spaced components. Perceptual identification of frequency-shifted sentences showed a similar large improvement with nominal ?F0 as seen for harmonic sentences, although overall performance was about 10% poorer. We compared performance with that of two autocorrelation-based computational models comprising four stages: (i) peripheral frequency selectivity and half-wave rectification; (ii) within-channel periodicity extraction; (iii) identification of the two major peaks in the summary autocorrelation function (SACF); (iv) a template-based approach to speech recognition using dynamic time warping. One model sampled the correlogram at the target-F0 period and performed spectral matching; the other deselected channels dominated by the interferer and performed matching on the short-lag portion of the residual SACF. Both models reproduced the monotonic increase observed in human performance with increasing ?F0 for the harmonic stimuli, but not for the frequency-shifted stimuli. A revised version of the spectral-matching model, which groups patterns of periodicity that lie on a curve in the frequency-delay plane, showed a closer match to the perceptual data for frequency-shifted sentences. The results extend the range of phenomena originally attributed to harmonic processing to grouping by common spectral pattern.