997 resultados para Total toxicity equivalence
Resumo:
INTRODUCTION: The EORTC 22922/10925 trial investigated the potential survival benefit and toxicity of elective irradiation of the internal mammary and medial supraclavicular (IM-MS) nodes Accrual completed in January 2004 and first results are expected in 2012. We present the toxicity reported until year 3 after treatment. PATIENTS AND METHODS: At each visit, toxicity was reported but severity was not graded routinely. Toxicity rates and performance status (PS) changes at three years were compared by chi(2) tests and logistic regression models in all the 3,866 of 4,004 patients eligible to the trial who received the allocated treatment. RESULTS: Only lung (fibrosis; dyspnoea; pneumonitis; any lung toxicities) (4.3% vs. 1.3%; p < 0.0001) but not cardiac toxicity (0.3% vs. 0.4%; p = 0.55) significantly increased with IM-MS treatment. No significant worsening of the PS was observed (p = 0.79), suggesting that treatment-related toxicity does not impair patient's daily activities. CONCLUSIONS: IM-MS irradiation seems well tolerated and does not significantly impair WHO PS at three years. A follow-up period of at least 10 years is needed to determine whether cardiac toxicity is increased after radiotherapy.
Resumo:
The immunogenicity and safety of a new recombinant hepatitis B vaccine from the Instituto Butantan (Butang®) were evaluated in a multicenter, double-blind, prospective equivalence study in three centers in Brazil. Engerix B® was the standard vaccine. A total of 3937 subjects were recruited and 2754 (70%) met all protocol criteria at the end of the study. All the subjects were considered healthy and denied having received hepatitis B vaccine before the study. Study subjects who adhered to the protocol were newborn infants (566), children 1 to 10 years old (484), adolescents from 11 to 19 years (740), adults from 20 to 30 years (568), and adults from 31 to 40 years (396). Vaccine was administered in three doses on the schedule 0, 1, and 6 months (newborn infants, adolescents, and adults) or 0, 1, and 7 months (children). Vaccine dose was intramuscular 10 µg (infants, children, and adolescents) or 20 µg (adults). Percent seroprotection (assumed when anti-HBs titers were > 10mIU/ml) and geometric mean titer (mIU/ml) were: newborn infants, 93.7% and 351.1 (Butang®) and 97.5% and 1530.6 (Engerix B®); children, 100% and 3600.0 (Butang®) and 97.7% and 2753.1 (Engerix B®); adolescents, 95.1% and 746.3 (Butang®) and 96% and 1284.3 (Engerix B®); adults 20-30 years old, 91.8% and 453.5 (Butang®) and 95.5% and 1369.0 (Engerix B®); and adults 31-40 years old, 79.8% and 122.7 (Butang®) and 92.4% and 686.2 (Engerix B®). There were no severe adverse events following either vaccine. The study concluded that Butang® was equivalent to Engerix B® in children, and less immunogenic but acceptable for use in newborn infants, adolescents, and young adults.
Resumo:
In spite of its widespread use, benznidazole's (BNZ) toxicity and low efficacy remains as major drawbacks that impair successful treatments against Chagas disease. Previously, attempting to increase the selectivity and reduce its toxicity on infected tissues, multilamellar liposomes (MLV) composed of hydrogenated soybean phosphatidylcholine (HSPC): distearoyl-phosphatidylglycerol (DSPG): cholesterol (CHOL) 2:1:2 mol:mol loaded with BNZ (MLV-BNZ) were designed. In this work we compared different properties of MLV-BNZ with those of BNZ. Opposite to other hydrophobic drugs, the results indicated that slight changes of BNZ×s association degree to proteins and lipoproteins should not modify the percentage of unbound drug available to exert pharmacological action. On the other hand, when loaded in MLV, BNZ reduced its association to plasma proteins in 45% and became refractory to the sinking effect of blood, dropping 4.5 folds. Additionally, when loaded in MLV, BNZ had higher volume distribution (160 ± 20 vs 102 ± 15 ml/kg) and total clearance (35.23 ± 2.3 vs 21.9 ± 1.4 ml/h.kg), and lower concentration-time curve (7.23 ± 0.2 vs 9.16 ± 0.5 µg.h/ml) than BNZ. Hence, these studies showed that for MLV-BNZ, the amount of BNZ can be substantially increased, from 25 to 70%, being this formulation more rapidly cleared from circulation than free drug; also due to the lower interaction with blood components, lower side effects can be expected.
Resumo:
Total energy expenditure (TEE) and patterns of activity were measured by means of a heart rate (HR)-monitoring method in a group of 8-10-year-old children including 13 obese children (weight, 46 +/- 10 kg; fat mass: 32 +/- 9%) and 16 nonobese children (weight, 31 +/- 5 kg; fat mass, 18 +/- 5%). Time for sleeping was not statistically different in the two groups of children (596 +/- 33 vs. 582 +/- 43 min; p = NS). Obese children spent more time doing sedentary activities (400 +/- 129 vs. 295 +/- 127 min; p < 0.05) and less time in nonsedentary activities (449 +/- 126 vs. 563 +/- 135 min; p < 0.05) than nonobese children. Time spent in moderate or vigorous activity-i.e., time spent at a HR between 50% of the maximal O2 uptake (peak VO2) and 70% peak VO2 (moderate) and at a HR > or = 70% peak VO2 (vigorous)-was not statistically different in obese and nonobese children (88 +/- 69 vs. 52 +/- 35 min and 20 +/- 21 vs. 16 +/- 13 min, respectively; p = NS). TEE was significantly higher in the obese group than in the nonobese group (9.46 +/- 1.40 vs. 7.51 +/- 1.67 MJ/day; p < 0.01). The energy expenditure for physical activity (plus thermogenesis) was significantly higher in the obese children (3.98 +/- 1.30 vs. 2.94 +/- 1.39 MJ/day; p < 0.05). The proportion of TEE daily devoted to physical activity (plus thermogenesis) was not significantly different in the two groups, as shown by the ratio between TEE and the postabsorptive metabolic rate (PMR): 1.72 +/- 0.25 obese vs 1.61 +/- 0.28 non-obese. In conclusion, in free-living conditions obese children have a higher TEE than do nonobese children, despite the greater time devoted to sedentary activities. The higher energy cost to perform weight-bearing activities as well as the higher absolute PMR of obese children help explain this apparent paradox.
Resumo:
BACKGROUND: Vascular-endothelial-growth-factor (VEGF) is a key mediator of angiogenesis. VEGF-targeting therapies have shown significant benefits and been successfully integrated in routine clinical practice for other types of cancer, such as metastatic colorectal cancer. By contrast, individual trial results in metastatic breast cancer (MBC) are highly variable and their value is controversial. OBJECTIVES: To evaluate the benefits (in progression-free survival (PFS) and overall survival (OS)) and harms (toxicity) of VEGF-targeting therapies in patients with hormone-refractory or hormone-receptor negative metastatic breast cancer. SEARCH METHODS: Searches of CENTRAL, MEDLINE, EMBASE, the Cochrane Breast Cancer Group's Specialised Register, registers of ongoing trials and proceedings of conferences were conducted in January and September 2011, starting in 2000. Reference lists were scanned and members of the Cochrane Breast Cancer Group, experts and manufacturers of relevant drug were contacted to obtain further information. No language restrictions were applied. SELECTION CRITERIA: Randomised controlled trials (RCTs) to evaluate treatment benefit and non-randomised studies in the routine oncology practice setting to evaluate treatment harms. DATA COLLECTION AND ANALYSIS: We performed data collection and analysis according to the published protocol. Individual patient data was sought but not provided. Therefore, the meta-analysis had to be based on published data. Summary statistics for the primary endpoint (PFS) were hazard ratios (HRs). MAIN RESULTS: We identified seven RCTs, one register, and five ongoing trials from a total of 347 references. The published trials for VEGF-targeting drugs in MBC were limited to bevacizumab. Four trials, including a total of 2886 patients, were available for the comparison of first-line chemotherapy, with versus without bevacizumab. PFS (HR 0.67; 95% confidence interval (CI) 0.61 to 0.73) and response rate were significantly better for patients treated with bevacizumab, with moderate heterogeneity regarding the magnitude of the effect on PFS. For second-line chemotherapy, a smaller, but still significant benefit in terms of PFS could be demonstrated for patients treated with bevacizumab (HR 0.85; 95% CI 0.73 to 0.98), as well as a benefit in tumour response. However, OS did not differ significantly, neither in first- (HR 0.93; 95% CI 0.84 to 1.04), nor second-line therapy (HR 0.98; 95% CI 0.83 to 1.16). Quality of life (QoL) was evaluated in four trials but results were published for only two of these with no relevant impact. Subgroup analysis stated a significant greater benefit for patients with previous (taxane) chemotherapy and patients with hormone-receptor negative status. Regarding toxicity, data from RCTs and registry data were consistent and in line with the known toxicity profile of bevacizumab. While significantly higher rates of adverse events (AEs) grade III/IV (odds ratio (OR) 1.77; 95% CI 1.44 to 2.18) and serious adverse events (SAEs) (OR 1.41; 95% CI 1.13 to 1.75) were observed in patients treated with bevacizumab, rates of treatment-related deaths were lower in patients treated with bevacizumab (OR 0.60; 95% CI 0.36 to 0.99). AUTHORS' CONCLUSIONS: The overall patient benefit from adding bevacizumab to first- and second-line chemotherapy in metastatic breast cancer can at best be considered as modest. It is dependent on the type of chemotherapy used and limited to a prolongation of PFS and response rates in both first- and second-line therapy, both surrogate parameters. In contrast, bevacizumab has no significant impact on the patient-related secondary outcomes of OS or QoL, which indicate a direct patient benefit. For this reason, the clinical value of bevacizumab for metastatic breast cancer remains controversial.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Resumo:
The aim of the currrent investigation was to evaluate (a) the toxicity of three pyrethroids (deltamethrin, lambda-cyhalothrin, and tetramethrin); (b) the effect of these insecticides on the locomotor activity; and (c) the repellent effect of N,N-diethyl-m-toluamide (DEET) on two deltamethrin-resistant strains of Triatoma infestans from Argentina (El Chorro and La Toma), and one susceptible strain. The resistance ratios (RRs) obtained for the La Toma strain were: > 10,769, 50.7, and > 5.2 for deltamethrin, lambda-cyhalothrin, and tetramethrin respectively. The RRs for the El Chorro strain were: > 10,769, 85.8, and > 5.2 for deltamethrin, lambda-cyhalothrin, and tetramethrin respectively. The hyperactivity usually caused by the three pyrethroids was in both the deltamethrin-resistant strains compared to the susceptible reference strain. No differences were observed in the repellent effect of DEET between the three groups. These results indicate that the deltamethrin-resistant insects have a cross resistance to lambda-cyhalothrin and tetramethrin, and are also resistant to the first symptom of pyrethroid poisoning (hyperactivity). However, the sensorial process related to DEET repellency does not appear to be altered.
Resumo:
BACKGROUND: carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis.RESULTS: extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months.CONCLUSIONS: these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.
Resumo:
Calotropis procera R. Br. (Asclepiadaceae) is a well-known medicinal plant with leaves, roots, and bark being exploited by popular medicine to fight many human and animal diseases. This work deals with the fractionation of the crude latex produced by the green parts of the plant and aims to evaluate its toxic effects upon egg hatching and larval development of Aedes aegypti. The whole latex was shown to cause 100% mortality of 3rd instars within 5 min. It was fractionated into water-soluble dialyzable (DF) and non-dialyzable (NDF) rubber-free materials. Both fractions were partially effective to prevent egg hatching and most of individuals growing under experimental conditions died before reaching 2nd instars or stayed in 1st instars. Besides, the fractions were very toxic to 3rd instars causing 100% mortality within 24 h. When both fractions were submitted to heat-treatment the toxic effects were diminished considerably suggesting low thermostability of the toxic compounds. Polyacrylamide gel electrophoresis of both fractions and their newly fractionated peaks obtained through ion exchange chromatography or desalting attested the presence of proteins in both materials. When submitted to protease digestion prior to larvicidal assays NDF lost most of its toxicity but DF was still strongly active. It may be possible that the highly toxic effects of the whole latex from C. procera upon egg hatching and larvae development should be at least in part due to its protein content found in NDF. However the toxicity seems also to involve non protein molecules present in DF.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). However, the treatment must be taken indefinitely and is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene), and is also bound to the alpha1-acid glycoprotein (AAG) in plasma. Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations were measured in 59 patients receiving Glivec® at diverse dosage regimens, using a validated chromatographic method developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one-compartment model with first-order absorption described the data appropriately, with an average apparent clearance of 12.4 l/h, a volume of distribution of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T and the AAG phenotype appears to modulate the disposition of imatinib. Large inter-individual variability (CV %) remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help in individualising the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.