946 resultados para Torque (Ortodontia)
Resumo:
This paper presents the optimal design of a sur- face mounted permanent magnet Brushless DC mo- tor (PMBLDC) meant for spacecraft applications. The spacecraft applications requires the choice of a torques motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine con¯gurations viz Slotted PMBLDC and Slotless PMBLDC with halbach array are compared with the help of analytical and FE methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
This paper presents the design and analysis of a 400-step hybrid stepper motor for spacecraft applications. The design of the hybrid stepper motor for achieving a specific performance requires the choice of appropriate tooth geometry. In this paper, a detailed account of the results of two-dimensional finite-element (FE) analysis conducted with different tooth shapes such as square and trapezoidal, is presented. The use of % more corresponding increase in detent torque and distorted static torque profile. For the requirements of maximum torque density, less-detent torque, and better positional accuracy and smooth static torque profile, different pitch slotting with equal tooth width has to be provided. From the various FE models subjected to analysis trapezoidal teeth configuration with unequal tooth pitch on the stator and rotor is found to be the best configuration and is selected for fabrication. The designed motor is fabricated and the experimental results is compared with the FE results
Resumo:
This paper presents the optimal design of a surface mounted permanent-magnet (PM) Brushless direct-current (BLDC) motor meant for spacecraft applications. The spacecraft applications requires the choice of a motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine configurations viz Slotted PMBLDC and Slotless PMBLDC with Halbach array are compared with the help of analytical and finite element (FE) methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with Halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
This paper presents the design and analysis of a novel machine family of Siotiess Permanent Magnet Brushless DC motors (PMBLDC) for precise positioning applications of spacecrafts. Initial design, selection of major parameters and air gap magnetic flux density are estimated using the analytical model of the machine. The proportion of the halbach array in the machine was optimized using FE to obtain near trapezoidal flux pattern. The novel machine topology is found to deliver high torque density, high efficiency, zero cogging torque, better positional stability, high torque to inertia ratio and zero magnetic stiction suiting space requirements. The machine provides uniform air gap flux density along the radius thus avoiding circulating currents in stator conductors and hence reducing torque ripple
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance.
Resumo:
This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.
Resumo:
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.
Resumo:
The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.
Resumo:
This paper presents a theoretical model of the torsional characteristics of parallel multi-part rope systems. In such systems, the ropes may cable, or wrap around each other, depending on the combination of applied torque, rope tension, length and spacing between the rope parts. Cabling constitutes a failure that might be retrievable but as such can seriously affect the performance of the rope system. The torsional characteristics of the system are very different before and after cabling, and theoretical models are given for both situations. Laboratory tests were performed on both two and four rope systems, with measurements being made of torque at rotations from 0 to 360 deg. Tests were run with different rope spacings, tensions and lengths and the results compared with predictions from the theoretical model. The conclusion from the test results was that the theoretical model predicts both the pre- and post-cabling torsional behaviour with an acceptable level of accuracy.
Resumo:
Oil rig mooring lines have traditionally consisted of chain and wire rope. As production has moved into deeper water it has proved advantageous to incorporate sections of fibre rope into the mooring lines. However, this has highlighted torsional interaction problems that can occur when ropes of different types are joined together. This paper describes a method by which the torsional properties of ropes can be modelled and can then be used to calculate the rotation and torque for two ropes connected in series. The method uses numerical representations of the torsional characteristics of both the ropes, and equates the torque generated in each rope under load to determine the rotation at the connection point. Data from rope torsional characterization tests have been analysed to derive constants used in the numerical model. Constants are presented for: a six-strand wire rope; a torque-balanced fibre rope; and a fibre rope that has been designed to be torque-matched to stranded wire rope. The calculation method has been verified by comparing predicted rotations with measured test values. Worked examples are given for a six-strand wire rope connected, firstly, to a torque-balanced fibre rope that offers little rotational restraint, and, secondly, to a fibre rope whose torsional properties are matched to that of the wire rope.