987 resultados para Tin(iv) Complexes
Resumo:
Sawhorse-type diruthenium tetracarbonyl complexes incorporating carboxyphenyl porphyrin bridges and pyridine axial ligands have been prepared, characterized and evaluated as potential photosensitizing and chemotherapeutic agents in several human cancer cells (A2780, A549, Me300, HeLa). The mono carboxyphenyl porphyrin derivatives, 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin (HOOCR1-H2) and 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin-Zn (HOOCR1-Zn), after reaction with Ru-3(CO)(12) and pyridine, give the dinuclear complexes [Ru-2(CO)(4)(OOCR1-H2)(2)(NC5H5)(2)] (1) and [Ru-2(CO)(4)-(OOCR1-Zn)(2)(NC5H5)(2)] (2), respectively. Under the same reaction conditions, the di-carboxyphenyl porphyrin derivatives, 5,10-di(4-carboxyphenyl)-15,20-diphenyl-21,23H-porphyrin (HOOCR2-H2COOH) and 5,10-di(4-carboxyphenyl)-15,20-diphenylporphyrin-Zn (HOOCR2-ZnCOOH), give rise to the tetranuclear complexes, [{Ru-2(CO)(4)(NC5H5)(2)}(2)(OOCR2-H2COO)(2)] (3) and [{Ru-2(CO)(4)(NC5H5)(2! )}(2)(OOCR2-ZnCOO)(2)] (4), in which two sawhorse diruthenium tetracarbonyl units are linked by the di-carboxyphenyl porphyrin ligands. When tested in human cancer cell lines, both Zn(II) metallo-porphyrin derivatives 2 and 4 and the tetranuclear derivative 3 show some degree of cytotoxicity in the dark, but seem to present no phototoxicity upon irradiation at 652 nm. These results demonstrate the effect of the Zn(II) ion insertion into the porphyrin core, resulting in increased cytotoxicity and decreased phototoxicity. On the other hand, complex 1, the less cytotoxic derivative with IC50 > 170 mu M in HeLa cervix and A2780 ovarian cancer cell lines, shows an excellent phototoxicity toward these cancer cell lines with LD50 comprised between 4.5 and 7.5 J/cm(2) (irradiance 30 mW/cm(2)) at 5 mu M concentration (incubation time: 24 h). Overall, an excellent ratio between photo-and cytotoxicity has been found for the metal-free porphyrin derivative [Ru-2(CO)(4)(OOCR1-H2)(2)(! NC5H5)(2)] (1).
Resumo:
Référence bibliographique : Rol, 57824
Resumo:
Conocer nuevamente la tasa de agudizaciones asmáticas en una población determinada así como sus características clínicas puede contribuir a acotar con mayor precisión los factores desencadenantes sobre los que incidir así como a ajustar mejor los tratamientos a instaurar. Así mismo haber estudiado las mismas características clínicas además de los tratamientos de base de los pacientes y los tratamientos administrados durante la exacerbación y alta en una misma población, con un intervalo de 6 años puede ayudarnos a comprender la aplicabilidad y a realizar una monitorización real del uso del tratamiento en nuestra sociedad.
Resumo:
Background a nd A ims: The prevalence of small intestinal bowel bacterial o vergrowth (SIBO) i n patients w ith irritable bowel syndrome (IBS) ranges from 43% to 78% as determined by t he lactulose hydrogen breath (LHBT) t est. Although rifaximine, a non-absorbable antibiotic, h as b een able to decrease I BS s ymptoms i n placebo-controlled r andomized trials, these results were not repeated in phase IV studies. We aimed to assess the prevalence of SIBO in an IBS cohort and to evaluate the response to rifaximin. Methods: I BS p atients f ulfilled Rome III criteria, had an absence of alarm symptoms, n ormal f ecal c alproectin, and normal e ndoscopic workup. They underwent lactulose hydrogen breath t esting (LHBT) for SIBO diagnosis. P atients with SIBO were t reated w ith rifaximine tablets f or 14 d ays. Symptoms were a ssessed by q uestionnaires before rifaximin treatment and at week 6. Results: Hundred-fifty IBS patients were enrolled (76% female, mean age 44 ± 16 years), of whom 106 (71%) were diagnosed with SIBO and consequently treated with rifaximine. Rifaximine treatment s ignificantly reduced the following symptoms as assessed by t he s ymptom q uestionnaire: bloating (5.5 ± 2.6 before vs. 3 .6 ± 2.7 after treatment, p <0.001), flatulence (5 ± 2.7 vs. 4 ± 2.7, p = 0.015), diarrhea (2.9 ± 2.4 vs. 2 ± 2.4, p = 0.005), abdominal pain (4.8 ± 2.7 vs. 3.3 ± 2.5, p <0.001) and resulted in improved overall well-being (3.9 ± 2.4 vs. 2.7 ± 2.3, p <0.001). The LHBT was repeated 2-4 weeks after rifaximine treatment in 6 5/93 (70%) patients. Eradication of SIBO was documented in 85% of all patients (55/65). Conclusions: The results o f our phase IV trial i ndicate that a high proportion of IBS p atients t ested positive f or SIBO. I BS symptoms w ere significantly diminished following a 2-week treatment with rifaximine.
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary