817 resultados para Time varying control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the stochastic response of a nonlinear continuous system. First, the general method of nonstationary continuous equivalent linearization is developed. This technique allows replacement of the original nonlinear system with a time-varying linear continuous system. Next, a numerical implementation is described which allows solution of complex problems on a digital computer. In this procedure, the linear replacement system is discretized by the finite element method. Application of this method to systems satisfying the one-dimensional wave equation with two different types of constitutive nonlinearities is described. Results are discussed for nonlinear stress-strain laws of both hardening and softening types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta Dissertação são propostos dois esquemas de controle para sistemas não-lineares com atraso. No primeiro, o objetivo é controlar uma classe de sistemas incertos multivariáveis, de grau relativo unitário, com perturbações não-lineares descasadas dependentes do estado, e com atraso incerto e variante no tempo em relação ao estado. No segundo, deseja-se controlar uma classe de sistemas monovariáveis, com parâmetros conhecidos, grau relativo arbitrário, atraso arbitrário conhecido e constante na saída. Admitindo-se que o atraso na entrada pode ser deslocado para a saída, então, o segundo esquema de controle pode ser aplicado a sistemas com atraso na entrada. Os controladores desenvolvidos são baseados no controle por modo deslizante e realimentação de saída, com função de modulação para a amplitude do sinal de controle. Além disso, observadores estimam as variáveis de estado não-medidas. Em ambos os esquemas de controle propostos, garante-se propriedades de estabilidade globais do sistema em malha fechada. Simulações ilustram a eficácia dos controladores desenvolvidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

139 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta Dissertação irá apresentar a utilização de técnicas de controle nãolinear, tais como o controle adaptativo e robusto, de modo a controlar um sistema de Eletroestimulação Funcional desenvolvido pelo laboratório de Engenharia Biomédica da COPPE/UFRJ. Basicamente um Eletroestimulador Funcional (Functional Electrical Stimulation FES) se baseia na estimulação dos nervos motores via eletrodos cutâneos de modo a movimentar (contrair ou distender) os músculos, visando o fortalecimento muscular, a ativação de vias nervosas (reinervação), manutenção da amplitude de movimento, controle de espasticidade muscular, retardo de atrofias e manutenção de tonicidade muscular. O sistema utilizado tem por objetivo movimentar os membros superiores através do estímulo elétrico de modo a atingir ângulos-alvo pré-determinados para a articulação do cotovelo. Devido ao fato de não termos conhecimento pleno do funcionamento neuro-motor humano e do mesmo ser variante no tempo, não-linear, com parâmetros incertos, sujeito a perturbações e completamente diferente para cada indivíduo, se faz necessário o uso de técnicas de controle avançadas na tentativa de se estabilizar e controlar esse tipo de sistema. O objetivo principal é verificar experimentalmente a eficácia dessas técnicas de controle não-linear e adaptativo em comparação às técnicas clássicas, de modo a alcançar um controle mais rápido, robusto e que tenha um desempenho satisfatório. Em face disso, espera-se ampliar o campo de utilização de técnicas de controle adaptativo e robusto, além de outras técnicas de sistemas inteligentes, tais como os algoritmos genéticos, provando que sua aplicação pode ser efetiva no campo de sistemas biológicos e biomédicos, auxiliando assim na melhoria do tratamento de pacientes envolvidos nas pesquisas desenvolvidas no Laboratório de Engenharia Biomédica da COPPE/UFRJ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Driven by the need for more responsive manufacturing processes and as a consequence of increasing complexity in products and production systems, this short paper introduces a number of developments in the area of modular, distributed manufacturing systems. Requirements for the development of such systems are addressed and, in particular, the relevance to current and future integrated control systems is examined. One of the key issues for integrated control systems in the future is the need to provide support for distributed decision-making in addition to existing distributed control capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a group of agents that aim to reach an agreement on individually received time-varying signals by local communication. In contrast to static network averaging problem, the consensus considered in this paper is reached in a dynamic sense. A discrete-time dynamic average consensus protocol can be designed to allow all the agents tracking the average of their reference inputs asymptotically. We propose a minimal-time dynamic consensus algorithm, which only utilises a minimal number of local observations of a randomly picked node in a network to compute the final consensus signal. Our results illustrate that with memory and computational ability, the running time of distributed averaging algorithms can be indeed improved dramatically as suggested by Olshevsky and Tsitsiklis. © 2012 AACC American Automatic Control Council).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for robust network reconstruction of Linear Time-Invariant (LTI) systems in the presence of noise, estimation errors and unmodelled nonlinearities. The method here builds on previous work [1] on robust reconstruction to provide a practical implementation with polynomial computational complexity. Following the same experimental protocol, the algorithm obtains a set of structurally-related candidate solutions spanning every level of sparsity. We prove the existence of a magnitude bound on the noise, which if satisfied, guarantees that one of these structures is the correct solution. A problem-specific model-selection procedure then selects a single solution from this set and provides a measure of confidence in that solution. Extensive simulations quantify the expected performance for different levels of noise and show that significantly more noise can be tolerated in comparison to the original method. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper investigates the synchronization of a network of identical linear state-space models under a possibly time-varying and directed interconnection structure. The main result is the construction of a dynamic output feedback coupling that achieves synchronization if the decoupled systems have no exponentially unstable mode and if the communication graph is uniformly connected. The result can be interpreted as a generalization of classical consensus algorithms. Stronger conditions are shown to be sufficient-but to some extent, also necessary-to ensure synchronization with the diffusive static output coupling often considered in the literature. © 2009 Elsevier Ltd. All rights reserved.