1000 resultados para Thin Filims
Resumo:
Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti: 45/55 aL.%). The rate of deposition and thickness of sputter deposited films were maintained to similar to 35 nm min(-1) and 4 mu m respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (110) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (100), (101), and (200) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO2) along with parent Austenite (110) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO2) layer on the surface of the films, in both the cases. The extent of the formation of surface oxide layer onto the surface of NiTi films has enhanced after chemical treatment. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.
Resumo:
The present experimental study investigates the influence of post-deposition annealing on the transverse piezoelectric coefficient (d(31)) value of ZnO thin films deposited on a flexible metal alloy substrate, and its relationship with the vibration sensing performance. Highly c-axis oriented and crystalline ZnO thin films were deposited on flexible Phynox alloy substrate via radio frequency (RF) reactive magnetron sputtering. ZnO thin film samples were annealed at different temperatures ranging from 100 degrees C to 500 degrees C, resulting in the temperature of 300 degrees C determined as the optimum annealing temperature. The crystallinity, morphology, microstructure, and rms surface roughness of annealed ZnO thin films were systematically investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. The piezoelectric d(31) coefficient value was measured by 4-point bending method. ZnO thin film annealed at 300 degrees C was highly c-axis oriented, crystalline, possesses fine surface morphology with uniformity in the grain size. This film showed higher d(31) coefficient value of 7.2 pm V-1. A suitable in-house designed and developed experimental set-up, for evaluating the vibration sensing performance of annealed ZnO thin films is discussed. As expected the ZnO thin film annealed at 300 degrees C showed relatively better result for vibration sensing studies. It generates comparatively higher peak output voltage of 147 mV, due to improved structural and morphological properties, and higher piezoelectric d(31) coefficient value. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth. (C) 2014 AIP Publishing LLC.
Resumo:
Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.
Resumo:
We present electrical transport arid low frequency (1/f) noise measurements on mechanically exfoliated single, In and triLayer MoS2-based FPI devices on Si/SiO2 substrate. We find that tie electronic states hi MoS2 are localized at low temperatures (T) and conduction happens through variable range hopping (VRH). A steep increase of 1/f noise with decreasing T, typical for localized regime was observed in all of our devices. From gate voltage dependence of noise, we find that the noise power is inversely proportional to square of the number density (proportional to 1/n(2)) for a wide range of T, indicating number density fluctuations to be the dominant source of 1/f noise in these MoS2 FETs.