970 resultados para Thermogravimetric Analysis (TGA)
Resumo:
The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.
Resumo:
Thermal analysis methods (differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis) were used to characterize the nature of polyester-melamine coating matrices prepared under nonisothermal, high-temperature, rapid-cure conditions. The results were interpreted in terms of the formation of two interpenetrating networks with different glass-transition temperatures (a cocondensed polyester-melamine network and a self-condensed melamine-melamine network), a phenomenon not generally seen in chemically similar, isothermally cured matrices. The self-condensed network manifested at high melamine levels, but the relative concentrations of the two networks were critically dependent on the cure conditions. The optimal cure (defined in terms of the attainment of a peak metal temperature) was achieved at different oven temperatures and different oven dwell times, and so the actual energy absorbed varied over a wide range. Careful control of the energy absorption, by the selection of appropriate cure conditions, controlled the relative concentrations of the two networks and, therefore, the flexibility and hardness of the resultant coatings. (C) 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Cbem 41: 1603-1621, 2003.
Resumo:
We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.
Resumo:
Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.
Resumo:
The thermal degradation of high density polyethylene has been modelled by the random breakage of polymer bonds, using a set of population balance equations. A model was proposed in which the population balances were lumped into representative sizes so that the experimentally determined molecular weight distribution of the original polymer could be used as the initial condition. This model was then compared to two different cases of the unlumped population balance which assumed unimolecular initial distributions of 100 and 500 monomer units, respectively. The model that utilised the experimentally determined molecular weight distribution was found to best describe the experimental data. The model fits suggested a second mechanism in addition to random breakage at slow reaction rates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
An international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized-bed reactors and entrained-flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized-bed fast pyrolysis systems.
Resumo:
The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.
Resumo:
The interaction of ionising radiation with polymers is described and the literature relating; to the effects on polypropylene is reviewed. Oxidative and free radical reactions are discussed with particular reference to post-irradiationeffects.Isotactic and atactic polypropylene were δ and electron irradiated to doses of up to 20 megarad. Irradiations weremainly made in air. A series of other polymers were also irradiated in a preliminary survey. Molar mass measurements are used to measure the radiationyield for chain scission G (s). Irradiation at room temperature causes significantly more chain scission than at 195K. Additional chain scission occurs on storage following irradiation at 195 K. Free radical concentrations are determined by electron spin resonance, and the decay rates measured. The radical formed in air is a peroxy radical and in vacuo is a hydrocarbon radical. At77K in vacuo the radical is -CH2 - C* (CH3) - CH2 - but additional radicals are produced on warning to room temperature. The effects of increasing tenparature on radicals formed in air are described. Electron spin resonance studies on atactic polypropylene,and isotactic polypropylene in hydrogen, sulphur dioxide and nitric oxide are reported.. The melting temperatures, spherulite growth rates, and isothermal crystallisation rates of irradiated polypropylene are compared to those of the non-irradiated polymer. Crystallisation is found to proceed with an Avrami integer n = 2. At a given crystallisation temperature, the overall crystallisation rate of irradiated polymer is less than the non-irradiated, but spherulite growth rates are identical. Thermogravimetric analysis is used to assess the thermal stability of irradiated polypropylene in nitrogen, air and oxygen. Hydroperoxide analysis is used to show that several molecules of oxygen are absorbed for each initial radical, and that hydroperoxides continue to be formed for a long period following irradiation. Possible solutions for minimising irradiation and post-irradiation degradation are suggested, together with some problems for further study.
Resumo:
The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.
Resumo:
Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.
Resumo:
A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.
Resumo:
A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa.
Resumo:
Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.