874 resultados para Theory of Complex Socialization
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.
Resumo:
Decentralised controls offer advantages for the implementation as well as the operation of controls of steady conveyors. Such concepts are mainly based on RFID. Due to the reduced expense for appliances and software, however, the plant behaviour cannot be determined as accurately as in centrally controlled systems. This article describes a simulation-based method by which the performances of these two control concepts can easily be evaluated in order to determine the suitability of the decentralised concept.
Resumo:
The IDA model of cognition is a fully integrated artificial cognitive system reaching across the full spectrum of cognition, from low-level perception/action to high-level reasoning. Extensively based on empirical data, it accurately reflects the full range of cognitive processes found in natural cognitive systems. As a source of plausible explanations for very many cognitive processes, the IDA model provides an ideal tool to think with about how minds work. This online tutorial offers a reasonably full account of the IDA conceptual model, including background material. It also provides a high-level account of the underlying computational “mechanisms of mind” that constitute the IDA computational model.
Resumo:
A model of theoretical science is set forth to guide the formulation of general theories around abstract concepts and processes. Such theories permit explanatory application to many phenomena that are not ostensibly alike, and in so doing encompass socially disapproved violence, making special theories of violence unnecessary. Though none is completely adequate for the explanatory job, at least seven examples of general theories that help account for deviance make up the contemporary theoretical repertoire. From them, we can identify abstractions built around features of offenses, aspects of individuals, the nature of social relationships, and different social processes. Although further development of general theories may be hampered by potential indeterminacy of the subject matter and by the possibility of human agency, maneuvers to deal with such obstacles are available.
Resumo:
Recent improvements in precursor chemistry, reactor geometry and run conditions extend the manufacturing capability of traditional flame aerosol synthesis of oxide nanoparticles to metals, alloys and inorganic complex salts. As an example of a demanding composition, we demonstrate here the one-step flame synthesis of nanoparticles of a 4-element non-oxide phosphor for upconversion applications. The phosphors are characterized in terms of emission capability, phase purity and thermal phase evolution. The preparation of flame-made beta-NaYF4 with dopants of Yb, Tm or Yb, Er furthermore illustrates the now available nanoparticle synthesis tool boxes based on modified flamespray synthesis from our laboratories at ETH Zurich. Since scaling concepts for flame synthesis, including large-scale filtration and powder handling, have become available commercially, the development of industrial applications of complex nanoparticles of metals, alloys or most other thermally stable, inorganic compounds can now be considered a feasible alternative to traditional top-down manufacturing or liquid-intense wet chemistry.