996 resultados para Temperature Distributions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maghemite (γFe2O3) from tuffite is exceptionally rich in Mg, relatively to most of those reportedly found in other mafic lithosystems. To investigate in detail the compositional and structural variabilities of this natural magnetic iron oxide, sets of crystals were isolated from samples collected at different positions in a tuffite weathering mantle. These sets of crystal were individually powdered and studied by X-ray diffractometry, Mössbauer spectroscopy, magnetization measurements and chemical analysis. Lattice parameter of the cubic cell (a0) was found to vary from 0.834(1) to 0.8412(1) nm. Lower a0-values are characteristic of maghemite whereas higher ones are related to a magnetite precursor. FeO content ranges up to 17 mass % and spontaneous magnetization ranges from 8 to 32 J T-1 kg-1. Zero-field room temperature Mössbauer spectra are rather complex, indicating that the hyperfine field distributions due to Fe3+ and mixed valence Fe3+/2+ overlap. The structural variabilities of the (Mg, Ti)-rich iron oxide spinels is essentially related to the range of chemical composition of its precursor (Mg, Ti)-rich magnetite, and probably to the extent to which it has been oxidized during transformation in soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive thermogenesis allows mammals to resist to cold. For instance, in brown adipose tissue (BAT) the facultative uncoupling of the proton gradient from ATP synthesis in mitochondria is used to generate systemic heat. However, this system necessitates an increase of the Uncoupling protein 1 (Ucp1) and its activation by free fatty acids. Here we show that mice without functional Period2 (Per2) were cold sensitive because their adaptive thermogenesis system was less efficient. Upon cold-exposure, Heat shock factor 1 (HSF1) induced Per2 in the BAT. Subsequently, PER2 as a co-activator of PPARα increased expression of Ucp1. PER2 also increased Fatty acid binding protein 3 (Fabp3), a protein important to transport free fatty acids from the plasma to mitochondria to activate UCP1. Hence, in BAT PER2 is important for the coordination of the molecular response of mice exposed to cold by synchronizing UCP1 expression and its activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review methods to estimate the average crystal (grain) size and the crystal (grain) size distribution in solid rocks. Average grain sizes often provide the base for stress estimates or rheological calculations requiring the quantification of grain sizes in a rock's microstructure. The primary data for grain size data are either 1D (i.e. line intercept methods), 2D (area analysis) or 3D (e.g., computed tomography, serial sectioning). These data have been used for different data treatments over the years, whereas several studies assume a certain probability function (e.g., logarithm, square root) to calculate statistical parameters as the mean, median, mode or the skewness of a crystal size distribution. The finally calculated average grain sizes have to be compatible between the different grain size estimation approaches in order to be properly applied, for example, in paleo-piezometers or grain size sensitive flow laws. Such compatibility is tested for different data treatments using one- and two-dimensional measurements. We propose an empirical conversion matrix for different datasets. These conversion factors provide the option to make different datasets compatible with each other, although the primary calculations were obtained in different ways. In order to present an average grain size, we propose to use the area-weighted and volume-weighted mean in the case of unimodal grain size distributions, respectively, for 2D and 3D measurements. The shape of the crystal size distribution is important for studies of nucleation and growth of minerals. The shape of the crystal size distribution of garnet populations is compared between different 2D and 3D measurements, which are serial sectioning and computed tomography. The comparison of different direct measured 3D data; stereological data and direct presented 20 data show the problems of the quality of the smallest grain sizes and the overestimation of small grain sizes in stereological tools, depending on the type of CSD. (C) 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and nondelayed models. The results are discussed in terms of the characteristic parameters of the models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Electroencephalography (EEG) is widely used to assess neurological prognosis in patients who are comatose after cardiac arrest, but its value is limited by varying definitions of pathological patterns and by inter-rater variability. The American Clinical Neurophysiology Society (ACNS) has recently proposed a standardized EEG-terminology for critical care to address these limitations. METHODS/DESIGN: In the TTM-trial, 399 post cardiac arrest patients who remained comatose after rewarming underwent a routine EEG. The presence of clinical seizures, use of sedatives and antiepileptic drugs during the EEG-registration were prospectively documented. DISCUSSION: A well-defined terminology for interpreting post cardiac arrest EEGs is critical for the use of EEG as a prognostic tool. TRIAL REGISTRATION: The TTM-trial is registered at ClinicalTrials.gov (NCT01020916).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effects of temperature and pH on larval development, settlement and juvenile survival of a Mediterranean population of the sea urchin Arbacia lixula. Three temperatures (16, 17.5 and 19 °C) were tested at present pH conditions (pHT 8.1). At 19 °C, two pH levels were compared to reflect present average (pHT 8.1) and near-future average conditions (pHT 7.7, expected by 2100). Larvae were reared for 52-days to achieve the full larval development and complete the metamorphosis to the settler stage. We analyzed larval survival, growth, morphology and settlement success. We also tested the carry-over effect of acidification on juvenile survival after 3 days. Our results showed that larval survival and size significantly increased with temperature. Acidification resulted in higher survival rates and developmental delay. Larval morphology was significantly altered by low temperatures, which led to narrower larvae with relatively shorter skeletal rods, but larval morphology was only marginally affected by acidification. No carry-over effects between larvae and juveniles were detected in early settler survival, though settlers from larvae reared at pH 7.7 were significantly smaller than their counterparts developed at pH 8.1. These results suggest an overall positive effect of environmental parameters related to global change on the reproduction of A. lixula, and reinforce the concerns about the increasing negative impact on shallow Mediterranean ecosystems of this post-glacial colonizer.