987 resultados para Techniques: radial velocities
Resumo:
This paper obtains a new accurate model for sensitivity in power systems and uses it in conjunction with linear programming for the solution of load-shedding problems with a minimum loss of loads. For cases where the error in the sensitivity model increases, other linear programming and quadratic programming models have been developed, assuming currents at load buses as variables and not load powers. A weighted error criterion has been used to take priority schedule into account; it can be either a linear or a quadratic function of the errors, and depending upon the function appropriate programming techniques are to be employed.
Resumo:
The paper reports further work on the amplitude-comparison technique described by the same authors in a previous paper. This technique is extended to develop improved polar characteristics. Discontinuous polar characteristics, like directional parallelograms, are obtained by a single measuring gate with a simple mode of relay circuitry, whereas two measuring gates are required to provide a directional-quadrilateral characteristic of potentially general application. The paper also describes some new possibilities in phase-comparison methods for distance-protection schemes. Comparator models which effect the amplitude and phase comparison of the relaying signals are described in their schematic form. A comprehensive theoretical basis for comparison is also presented.
Resumo:
The paper presents a graphical-numerical method for determining the transient stability limits of a two-machine system under the usual assumptions of constant input, no damping and constant voltage behind transient reactance. The method presented is based on the phase-plane criterion,1, 2 in contrast to the usual step-by-step and equal-area methods. For the transient stability limit of a two-machine system, under the assumptions stated, the sum of the kinetic energy and the potential energy, at the instant of fault clearing, should just be equal to the maximum value of the potential energy which the machines can accommodate with the fault cleared. The assumption of constant voltage behind transient reactance is then discarded in favour of the more accurate assumption of constant field flux linkages. Finally, the method is extended to include the effect of field decrement and damping. A number of examples corresponding to each case are worked out, and the results obtained by the proposed method are compared with those obtained by the usual methods.
Resumo:
This paper suggests the use of simple transformations like ÿ=kx, kx2 for second-order nonlinear differential equations to effect rapid plotting of the phase-plane trajectories. The method is particularly helpful in determining quickly the trajectory slopes along simple curves in any desired region of the phase plane. New planes such as the tÿ-x, tÿ2-x are considered for the study of some groups of nonlinear time-varying systems. Suggestions for solving certain higher-order nonlinear systems are also made.
Resumo:
In the Himalayas, large area is covered by glaciers, seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover have been discussed. Field and satellite based investigations suggest, most of the Himalayan glaciers are retreating though the rate of retreat is varying from glacier to glacier, ranging from few meters to almost 50 meters per year, depending upon the numerous glacial, terrain and meteorological parameters. Retreat was estimated for 1868 glaciers in eleven basins distributed across the Indian Himalaya since 1962 to 2001/02. Estimates show an overall reduction in glacier area from 6332 to 5329 sq km, an overall deglaciation of 16 percent.Snow line at the end of ablation season on the Chhota Shigri glacier suggests a change in altitude from 4900 to 5200 m from late 1970’s to the present. Seasonal snow cover monitoring of the Himalaya has shown large amounts of snow cover depletion in early part of winter, i.e. from October to December. For many basins located in lower altitude and in south of Pir Panjal range, snow ablation was observed through out the winter season. In addition, average stream runoff of the Baspa basin during the month of December shows an increase by 75 per cent. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter time increase in stream runoff suggest an influence of climate change on the Himalayan cryosphere.
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.
Resumo:
A detailed study on the removal of pollutants (NOx, aldehydes and CO) from the exhaust of a stationary diesel engine is carried out using barrier discharge hybrid plasma techniques. The objective of the study is to make a comparative analysis. For this purpose, the exhaust treatment was carried out in two stages. In the first stage, the exhaust was treated with plasma process and plasma-adsorbent hybrid process. The effectiveness of the two processes with regard to NOx removal and by-product reduction was discussed. In the second stage, the exhaust was treated by plasma and plasma-catalyst hybrid process. The effectiveness of the two processes with regard to pollutants (NOx, CO) removal and by-product reduction was analyzed. Finally, a comprehensive comparison of different techniques has been made and feasible plasma based hybrid techniques for stationary and non-stationary engine exhaust treatments were proposed.
Resumo:
An efficient load flow solution technique is required as a part of the distribution automation (DA) system for taking various control and operations decisions. This paper presents an efficient and robust three phase power flow algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation to calculate branch currents and node voltages. The proposed method has been tested to analyse several practical distribution networks of various voltage levels and also having high R/X ratio. The results for a practical distribution feeder are presented for illustration purposes. The application of the proposed method is also extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.
Resumo:
This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.
Resumo:
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of C alpha atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Resumo:
In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.