933 resultados para TP53 mutations
Resumo:
BACKGROUND: Dystonia is a heterogenous group of movement disorders whose clinical spectrum is very wide. At least 13 different genes and gene loci have been reported. While a 3-bp deletion in the DYT1 gene is the most frequent cause of early limb-onset, generalized dystonia, it has also been found in non-generalized forms of sporadic dystonia. An 18-bp deletion in the DYT1 gene has also been reported. OBJECTIVES: We screened for the 3-bp and 18-bp deletions in the DYT1 gene among our sporadic, adult-onset primary dystonia patients in Singapore. We reviewed the literature to compare the frequency of DYT1 mutation between the East and the West. METHODS: We screened 54 patients with primary dystonia (focal: n=41; segmental: n=11; multifocal: n=1; generalized: n=1) for the deletions in the DYT1 gene. A careful review of all published literature on DYT1 screening among sporadic, non-familial, non-Ashkenazi Jewish patients was done. RESULTS: We did not detect any mutations in the exon 5 of the DYT1 gene in any of our patients. The frequency of DYT1 mutation amongst Asians (1.0%) was comparable to the West (1.56%) (p=NS). CONCLUSIONS: DYT1 mutations are uncommon amongst adult primary dystonia patients in Singapore.
Resumo:
Very recently, heterozygous mutations in the genes encoding transforming growth factor beta receptors I (TGFBR1) and II (TGFBR2) have been reported in Loeys-Dietz aortic aneurysm syndrome (LDS). In addition, dominant TGFBR2 mutations have been identified in Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). In the past, mutations of these genes were associated with atherosclerosis and several human cancers. Here, we report a total of nine novel and one known heterozygous sequence variants in the TGFBR1 and TGFBR2 genes in nine of 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1). To assess the pathogenic impact of these sequence variants, in silico analyses were performed by the PolyPhen, SIFT, and Fold-X algorithms and by means of a 3D homology model of the TGFBR2 kinase domain. Our results showed that in all but one of the patients the pathogenic effect of at least one sequence variant is highly probable (c.722C > T, c.799A > C, and c.1460G > A in TGFBR1 and c.773T > G, c.1106G > T, c.1159G > A, c.1181G > A, and c.1561T > C in TGFBR2). These deleterious alleles occurred de novo or segregated with the disease in the families, indicating a causative association between the sequence variants and clinical phenotypes. Since TGFBR2 mutations found in patients with MFS-related disorders cannot be distinguished from heterozygous TGFBR2 mutations reported in tumor samples, we emphasize the importance of segregation analysis in affected families. In order to be able to find the mutation that is indeed responsible for a MFS-related phenotype, we also propose that genetic testing for sequence alterations in TGFBR1 and TGFBR2 should be complemented by mutation screening of the FBN1 gene.
Resumo:
Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.
Resumo:
BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.
Resumo:
Because of the current controversy on the origin and clinical value of circulating KRAS codon 12 mutations in lung cancer, we screened 180 patients using a combined restriction fragment-length polymorphism and polymerase chain reaction (RFLP-PCR) assay. We detected KRAS mutations in 9% plasma samples and 0% matched lymphocytes. Plasma KRAS mutations correlated significantly with poor prognosis. We validated the positive results in a second laboratory by DNA sequencing and found matching codon 12 sequences in blood and tumor in 78% evaluable cases. These results support the notion that circulating KRAS mutations originate from tumors and are prognostically relevant in lung cancer.
Resumo:
BACKGROUND: Little information on the management and long-term follow-up of patients with biallelic mutations in the chloride channel gene CLCNKB is available. METHODS: Long-term follow-up was evaluated from 5.0 to 24 years (median, 14 years) after diagnosis in 13 patients with homozygous (n = 10) or compound heterozygous (n = 3) mutations. RESULTS: Medical treatment at last follow-up control included supplementation with potassium in 12 patients and sodium in 2 patients and medical treatment with indomethacin in 9 patients. At the end of follow-up, body height was 2.0 standard deviation score or less in 6 patients; 2 of these patients had growth hormone deficiency. Body weight (
Resumo:
Context and Objective: Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. Design, Setting, and Participants: Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. Results: Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. Conclusion: We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
Inherited factor XIII (FXIII) deficiency is known as one of the most rare blood coagulation disorder in humans. In the present study, phenotype and genotype of eight FXIII deficient Polish patients from five unrelated families were compared. The patients presented with a severe phenotype demonstrated by a high incidence of intracerebral haemorrhages (seven of eight patients), haemarthrosis (six patients) and bleeding due to trauma (five patients). Introduction of regular substitution with FXIII concentrate prevented spontaneous bleeding in seven patients. In all patients, mutations within the F13A gene have been identified revealing four missense mutations (Arg77Cys, Arg260Cys, Ala378Pro, Gly420Ser), one nonsense mutation (Arg661X), one splice site mutation (IVS5-1 G>A) and one small deletion (c.499-512del). One homozygous large deletion involving exon 15 was detected by failure of PCR product. The corresponding mutations resulted in severely reduced FXIII activity and FXIII A-subunit antigen concentration, while FXIII B-subunit antigen remained normal or mildly decreased. Structural analysis demonstrated that the novel Ala378Pro mutation may cause a disruption of the FXIII catalytic triad leading to a non-functional protein which presumably undergoes premature degradation. In conclusion, the severe phenotype with high incidence of intracranial bleeding and haemarthrosis was in accordance with laboratory findings on FXIII and with severe molecular defects of the F13A gene.
Resumo:
APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication in vitro. Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed in vitro for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.
Resumo:
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Resumo:
PURPOSE: The transcription factor CCAAT/enhancer binding protein-alpha (CEBPA) is crucial for normal myeloid differentiation. Mutations in the CEBPA gene are found in subsets of patients with acute myeloid leukemia (AML). Recently, three families were reported in whom several family members had germline CEBPA mutations and subsequently developed AML. Whereas familial AML is considered a rare event, the frequency of CEBPA germline mutations in AML is not known. PATIENTS AND METHODS: In this study, we screened 187 consecutive AML patients for CEBPA mutations at diagnosis. We detected 18 patients (9.6%) with CEBPA mutations. We then analyzed remission samples and constitutive DNA from these patients. RESULTS: We found that two (11.1%) of 18 AML patients with CEBPA mutations carried a germline N-terminal frameshift CEBPA mutation. Interestingly, additional members in the families of both of these patients have been affected by AML, and the germline CEBPA mutations were also observed in these patients. Additional somatic mutations in AML patients with germline CEBPA mutations in the two families comprised in-frame C-terminal CEBPA mutations in two patients, two nonsilent CEBPA point mutations in one patient, and monosomy 7 in one patient. CONCLUSION: This study shows, for the first time to our knowledge, that germline CEBPA mutations are frequently observed among AML patients with CEBPA mutations. Including the families with germline CEBPA mutations reported previously, additional somatic CEBPA mutations represent a frequent second event in AML with germline CEBPA mutations. Our data strongly indicate that germline CEBPA mutations predispose to AML and that additional somatic CEBPA mutations contribute to the development of the disease.