532 resultados para TICK
Resumo:
Observations of cattle in central and southern Queensland are collated to de. ne the prevalence and area of Stephanofilaria lesions associated with infestations of the buffalo fly, Haematobia irritans exigua. The observations were made on herds that were being used for other purposes. In a survey of similar to 1500 animals at Belmont in central Queensland in 1982, 98% of cows and 70% of calves had lesions. Most lesions were on the neck and dewlap and 10% were raw and weeping at the time of sampling. The total area of lesions per animal was strongly related to cattle breed and age. Old Bos taurus animals had the greatest area of lesions, whereas young Bos indicus had the least. Heritability estimates were low, averaging 0.01 for calves and 0.18 for cows. A smaller survey of cows and steers at Craighoyle in central Queensland in 1986 showed a higher numbers of lesions and positive correlations between the total lesion area and animal size. The lesion area increased with tick survival, suggesting that tick-resistant animals are also resistant to Stephanofilaria infection. Steers had smaller areas of lesions than cows, as found previously with cattle ticks. Long-term monitoring observations in central and southern Queensland between 1981 and 1986 showed that the total area of lesions was seasonal with a peak in late summer, consistent with the seasonal incidence of buffalo fly. Animals segregated into Low and High lesion herds maintained their differences over time. The lesions penetrated the dermis of the cattle hides and rendered the affected area unusable, but few lesions occurred on valuable parts of the hide so such economic effects are likely to be insignificant. One animal nearly died of a haemorrhage from a lesion on the dewlap and had to be treated. The results can inform policy on buffalo fly control, and biosecurity preparations in relation to the potential establishment of the OldWorld screw-worm fly, Chrysomyia bezziana, in Australia, which will be facilitated by the lesions. The results emphasise the significant animal welfare and biosecurity risks posed by the lesions in northern Australia.
Resumo:
The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
We explored patterns of infection of three apicomplexan blood parasites with different transmission mechanisms in 46 social groups across seven populations of the Australian lizard, Egernia stokesii. There was higher aggregation of infections within social groups for Hemolivia, transmitted by ticks, and Schellackia, either tick-transmitted or directly transmitted from mother to offspring, than for Plasmodium, with more mobile dipteran vectors. Prevalence was not related to group size, proximity to other groups or spatial overlap with adjacent groups for any of the parasites. However, for Hemolivia, groups with higher levels of relatedness among adults had higher parasite prevalence. Living in social groups leads to higher risk of infection for parasites with low transmission mobility. An unanswered question is why so few lizard species tolerate these risks to form stable social aggregations.
Resumo:
These guidelines have been prepared to assist in the planning, conduct and interpretation of studies for the assessment of the efficacy of acaricides (excluding vaccines and other bio-control agents) against single and multi-host ticks (Ixodidae) on ruminants. Information is provided on the selection of animals, dose determination, dose confirmation and field studies, record keeping and result interpretation. The use of pen facilities is advocated for dose determination and confirmation studies for defining therapeutic and persistent efficacy. A minimum of two studies per tick species for which claims are sought is recommended for each dose determination and dose confirmation investigation. If dose confirmation studies demonstrate greater than 95% efficacy the sponsor may proceed to field studies, where a minimum of two studies per geographical location is preferred to confirm the therapeutic and persistent efficacy under field conditions. If dose confirmation studies demonstrate less than 95% efficacy then longer-term field studies can be conducted over two tick seasons with a minimum of two studies per geographical location. These studies can incorporate other control methods such as tick vaccines, to demonstrate stable long-term tick management. Specific advice is also given on conducting studies with paralysis ticks. These guidelines are also intended to assist investigators on how to conduct specific experiments, to provide specific information for registration authorities involved in the decision-making process, to assist in the approval and registration of new acaricides, and to facilitate the worldwide adoption of standard procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Az ízeltlábúak által terjesztett fertőző betegségek egyre emelkedő mértékben jelentenek majd veszélyt Európa mérsékelt övi lakosságának egészségi állapotára nézve. A klímaváltozás következtében meghosszabbodó vegetációs időszak, és az emelkedő átlaghőmérséklet a már jelen lévő betegség (Pl. Lyme), és számos, a lakosság számára új, meleg égövi betegség megtelepedését, vagy újra megjelenését okozhatja, mint amilyen például a leishmaniasis vagy a malária. A jövőben nem csak a civil lakosság egészségi állapotát, de a hadsereg személyi állományának egészségét és a hadműveletek biztonságát is veszélyeztethetik a vektoriális megbetegedések. _____ Emerging vectorial diseases threaten the population of the temperate areas of Europe. Due to climate change the increasing seasonal mean temperatures and the prolongation of the potential activity period of arthropod vectorial organisms will enhance the importance of the tick-borne diseases (eg. Lyme disease) and will facilitate the expansion of new or re-emerging vectorial diseases, such as leishmaniasis or malaria. These serious vectorial diseases can cause notable hazard not only for citizens but for the personnels and may endanger the safety of the operations, too.
Resumo:
The change of ambient temperature plays a key role in determining the run of the annual Lyme season. Our aim was to explain the apparent contradiction between the annual unimodal Lyme borreliosis incidence and the bimodal Ixodes ricinus tick activity run – both observed in Hungary – by distinguishing the temperaturedependent seasonal human and tick activity, the temperature-independent factors, and the multiplicative effect of human outdoor activity in summer holiday, using data from Hungary in the period of 1998–2012. This separation was verified by modeling the Lyme incidence based on the separated factors, and comparing the run of the observed and modeled incidence. We demonstrated the bimodality of tick season by using the originally unimodal Lyme incidence data. To model the outdoor human activity, the amount of camping guest nights was used, which showed an irregular run from mid-June to September. The human outdoor activity showed a similar exponential correlation with ambient temperature to that what the relative incidence did. It was proved that summer holiday has great influence on Lyme incidence.
Resumo:
The change of ambient temperature plays a key role in determining the run of the annual Lyme season. Our aim was to explain the apparent contradiction between the annual unimodal Lyme borreliosis incidence and the bimodal Ixodes ricinus tick activity run – both observed in Hungary – by distinguishing the temperaturedependent seasonal human and tick activity, the temperature-independent factors, and the multiplicative effect of human outdoor activity in summer holiday, using data from Hungary in the period of 1998–2012. This separation was verified by modeling the Lyme incidence based on the separated factors, and comparing the run of the observed and modeled incidence. We demonstrated the bimodality of tick season by using the originally unimodal Lyme incidence data. To model the outdoor human activity, the amount of camping guest nights was used, which showed an irregular run from mid-June to September. The human outdoor activity showed a similar exponential correlation with ambient temperature to that what the relative incidence did. It was proved that summer holiday has great influence on Lyme incidence.
Resumo:
The various types of pig farming, intensive and extensive, expose them to pig parasites but also to those from the environment of the breeding site. In this work was evaluated the exposure of bigs bred in technified farms, SISCAL (intensive breeding system in pens) and not technified (backyard) to leptospira, ticks and rickettsiae. Blood sera were analyzed to determine titers of antibodies anti-Leptospira by SAM technique and antibodies anti-rickettsial by IFA, pigs were inspected for ticks and in their breeding environment and surrounding areas (pastures and riparian vegetation), ticks were collected by the flannel dragging technique. In the farms of pigs 10.4% had anti-Leptospira antibodies, followed by SISCAL (8%) and backyard animals (2.5%). The serovars found were Bratislava, Pomona, serovar, Canicola and Icterohaemorrhagiae. Higher percentage of properties with pigs raised outdoors (SISCAL) had tick infested animals (20%) than those raised in backyard (6.7%), while commercial farms had no infested pigs nor infested breeding place. In both SISCAL and backyard pig breeding properties ticks were observed at the breeding site environment. Tick infestations were detected in areas surrounding pig breeding site in all three husbandry suystems. Ticks found were all Amblyomma scultpum nymphs or adults with the exception of one of Amblyomma parvum adult. In relation to anti-rickettsia serology to five Rickettsia species, 55.2% of pigs from commercial farms reacted to al least one species, backyard pigs reacted to 89.7% and all pigs of SISCAL showed anti-rickettsia titers. Consecutive tick sampling (June 2014 to February 2016) in SISCAL FAZU in Uberaba, showed the establishment A. sculptum ticks maintained by domestic pigs. These observations demonstrate the ability the pigs to maintain populations of A. sculptum at a favorable environment and may indicate a new trend in environmental infestations by this species of tick. Exposure to Leptospira and Rickettsia demonstrated the potential pigs exposure and transmission of important diseases in public health.
Resumo:
An increased risk of severe and fatal Israeli spotted fever (ISF) has been observed in adults, mostly associated with ISF strain. Here, we report a case of severe ISF with multiorgan failure in a Portuguese child.
Resumo:
v. 17, n. 2, p. 296-302, abr./jun. 2016.
Resumo:
Lyme borreliosis (or Lyme disease) has become a virtual household term to the exclusion of other forgotten, emerging or re-emerging borreliae. We review current knowledge regarding these other borreliae, exploring their ecology, epidemiology and pathological potential, for example, for the newly described B. mayonii. These bacteria range from tick-borne, relapsing fever-inducing strains detected in some soft ticks, such as B. mvumii, to those from bat ticks resembling B. turicatae. Some of these emerging pathogens remain unnamed, such as the borrelial strains found in South African penguins and some African cattle ticks. Others, such as B. microti and unnamed Iranian strains, have not been recognised through a lack of discriminatory diagnostic methods. Technical improvements in phylogenetic methods have allowed the differentiation of B. merionesi from other borrelial species that co-circulate in the same region. Furthermore, we discuss members that challenge the existing dogma that Lyme disease-inducing strains are transmitted by hard ticks, whilst the relapsing fever-inducing spirochaetes are transmitted by soft ticks. Controversially, the genus has now been split with Lyme disease-associated members being transferred to Borreliella, whilst the relapsing fever species retain the Borrelia genus name. It took some 60 years for the correlation with clinical presentations now known as Lyme borreliosis to be attributed to their spirochaetal cause. Many of the borreliae discussed here are currently considered exotic curiosities, whilst others, such as B. miyamotoi, are emerging as significant causes of morbidity. To elucidate their role as potential pathogenic agents, we first need to recognise their presence through suitable diagnostic approaches.
Resumo:
Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.
Resumo:
Anaplasma marginale is the most prevalent tick-borne livestock pathogen and poses a significant threat to cattle industry. In contrast to currently available live blood-derived vaccines against A. marginale, alternative safer and better-defined subunit vaccines will be of great significance. Two proteins (VirB9-1 and VirB9-2) from the Type IV secretion system of A. marginale have been shown to induce humoral and cellular immunity. In this study, Escherichia coli were used to express VirB9-1 and VirB9-2 proteins. Silica vesicles having a thin wall of 6 nm and pore size of 5.8 nm were used as the carrier and adjuvant to deliver these two antigens both as individual or mixed nano-formulations. High loading capacity was achieved for both proteins, and the mouse immunisation trial with individual as well as mixed nano-formulations showed high levels of antibody titres over 107 and strong T-cell responses. The mixed nano-formulation also stimulated high-level recall responses in bovine T-cell proliferation assays. These results open a promising path towards the development of efficient A. marginale vaccines and provide better understanding on the role of silica vesicles to deliver multivalent vaccines as mixed nano-formulations able to activate both B-cell and T-cell immunity, for improved animal health.
Resumo:
bbd18 is a differentially expressed Borrelia burgdorferi gene that is transcribed at almost undetectable levels in spirochetes grown in vitro but dramatically upregulated during tick infection. The gene also displays low yet detectable expression at various times in tissues of murine hosts. As the gene product bears no homology to known proteins, its biological significance remains enigmatic. To understand the gene function, we created isogenic bbd18-deletion mutants as well as genetically-complemented isolates from an infectious wild-type B. burgdorferi strain. Compared to parental isolates, bbd18 mutants - but not complemented spirochetes - displayed slower in vitro growth. The bbd18 mutants also reflect significantly reduced ability to persist or remain undetectable both in immunocompetent and SCID mice, yet were able to survive in ticks. This suggests BBD18 function is essential in mammalian hosts but redundant in the arthropod vector. Notably, although bbd18 expression and in vitro growth defects are restored in the complemented isolates, their phenotype is similar to the mutants - being unable to persist in mice but able to survive in ticks. Despite low expression in cultured wild-type B. burgdorferi, bbd18 deletion downregulated several genes. Interestingly, expression of some, including ospD and bbi39, could be complemented, while that of others could not be restored via bbd18 re-expression. Correspondingly, bbd18 mutants displayed altered production of several proteins, and similar to RNA levels, some were restored in the bbd18 complement and others not. To understand how bbd18 deletion results in apparently permanent and noncomplementable phenotypic defects, we sought to genetically disturb the DNA topology surrounding the bbd18 locus without deleting the gene. Spirochetes with an antibiotic cassette inserted downstream of the gene, between bbd17 and bbd18, were significantly attenuated in mice, while a similar upstream insertion, between bbd18 and bbd19, did not affect infectivity, suggesting that an unidentified cis element downstream of bbd18 may encode a virulence-associated factor critical for infection.