990 resultados para Surface waters
Resumo:
Study of four species of the biserial planktonic foraminifer Streptochitus from Deep Sea Drilling Project cores of the Eauripik Rise, western equatorial Pacific, and Ninety-east Ridge, Indian Ocean, shows that both the stratigraphic distribution of species and their frequency patterns (though not actual frequencies or abundances) are correlative in the two areas, supporting their use as stratigraphic and paleoecologic index fossils. Their distributional trends are linked to eustatic sea level changes and to changes in the mixing of surface waters; low frequencies and species turnovers occur during regressive phases when strong circulation of oxygenated waters could lead to the subsequent decline of their oxygen-minimum habitat. The species S. subglobigerum. S. latum. S. globigerum, and S. globulosum succeed one another at intervals averaging 2,5 my from late middle Miocene Zone N15 through Quaternary Zone N23. The new species, Streptochilus suhglobigerum, is described for what was formerly thought to be a stratiraphically lower, disjunct part of the range of S. globigerum. These four species most likely belong to a single phylogenetic lineage as evidenced by some transitional morphologies.
Resumo:
Down-core samples of the planktonic foraminifer Neogloboquadrina pachyderma sinistral from the Mendeleyev Ridge in the western Arctic Ocean have been analyzed for Ba/Ca and d18O. The apparent distribution coefficient for N. pachyderma sin. is estimated at DBa = 0.22 ± 0.02. A meltwater event is identified at around 11.8 14C kyr BP and is coincident with elevated Ba/Ca ratios. The barium enrichment is believed to be the result of enhanced weathering and erosion following glaciation. Additionally, barium may have desorbed from shelf sediments as sea level rose. Changes in Ba/Ca correlate with the retreat of the Laurentide Ice Sheet and the evolution of the Mackenzie River drainage basin. Therefore maximum Ba/Ca in Arctic surface waters at 11.8 ka may be indicative of an increase in the export of freshwater from the Arctic to the North Atlantic, potentially contributing to the onset of the Younger Dryas. This work suggests that Ba/Ca in planktonic foraminifera may be a useful indicator of the timing and processes associated with deglaciation.
Resumo:
To assess the relationship of radiolarian production, species distribution in water and surface sediment to water-mass characteristics, biological productivity and export regimes in the Sea of Okhotsk (SOk) we accomplished a quantitative analysis of radiolarian assemblages obtained from 35 surface-sediment samples and 115 plankton samples recording the radiolarian depth distribution in the upper 1000 m of the water column at 23 locations. This study augments the knowledge on the autecological demands of radiolarians dwelling in a specific hydrographic and biological environment, and extracts new information on the significance of radiolarians for the assessment of past oceanographic and climatic development in high latitudes. Highest radiolarian accumulation rates and seasonal radiolarian standing stocks are encountered in the western part of the SOk close to Sakhalin, marking the environmental conditions in this area as most favorable for radiolarian production. Maximum standing stocks occur during summer, indicating that the radiolarian signal preserved in the sediment record is mainly produced during this season when the mesopelagic biomass is at highest activity. We identified seven radiolarian species and groups related to specific water-mass characteristics, depth habitats, and productivity regimes. Of those, Dictyophimus hirundo and Cycladophora davisiana are most prominent in the Sea of Okhotsk Intermediate Water (200-1000 m), the latter representing an indicator of the occurrence of cold and well ventilated intermediate/deep water and enhanced export of organic matter from a highly productive ocean surface. While Antarctissa (?) sp. 1 is typically related to the cold-water Sea of Okhotsk Dicothermal Layer (SODL), ranging between 50 and 150 m water depth, the surface waters above the SODL affected by strong seasonal variability are inhabited predominantly by taxa belonging to the Spongodiscidae, having a broad environmental tolerance. Taxa only found in the sediment record show that the plankton study did not cover all assemblages occurring in the modern SOk. This accounts for an assemblage restricted to the western Kurile Basin and apparently related to environmental conditions influenced by North Pacific and Japan Sea waters. Other important taxa include species of the Plagoniidae group, representing the most prominent contributors to the SOk plankton and surface sediments. These radiolarians show a more opportunistic occurrence and are indicative of high nutrient supply in a hydrographic environment characterized by pronounced stratification enhancing heterotrophic activity and phytodetritus export.
Resumo:
Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea-eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.
Resumo:
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.
Resumo:
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.
Resumo:
The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.
Resumo:
Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.