951 resultados para Superoxide dismutases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vários estudos têm sugerido que seres vivos podem ser suscetíveis aos campos eletromagnéticos (CEMs). Os supostos efeitos dos Campos Eletromagnéticos de Ultra Alta Freqüência (CEMUAFs) em sistemas biológicos são pouco conhecidos. Os relatos de um possível efeito biológico dependente da alteração de estados de oxidação entre pares de radicais sugerem um mecanismo de transdução orgânica para os campos. Outros trabalhos obtiveram alterações na sinalização celular e defesas antioxidantes após a exposição CEMUAFs e, tais alterações, poderiam ser um agente causador de doenças como, por exemplo, a leucemia infantil, esta já correlacionada com a exposição aos CEMs. Desta forma o objetivo deste estudo foi investigar se o CEMUAF (834 MHz) poderia interferir com o balanço oxidativo de planárias e ratos, assim como, estudar a participação de enzimas responsáveis pela hidrólise de nucleotídeos, enzimas estas reconhecidas por serem influenciadas pela ação de radicais livres. As planárias foram expostas por 1, 3 e 6 dias (8 h/dia). Após a exposição foi feito um homogenato de todo o corpo de cada animal. Foi encontrado um aumento na atividade da superóxido desmutase (SOD) e um decréscimo na atividade da catalase (CAT) e na defesa antioxidante não-enzimática (TRAP) após 6 dias de exposição. Adicionalmente, houve um aumento na freqüência de micronúcleos (MN) após 3 e 6 dias de exposição. Não houve alteração nos parâmetros de dano oxidativo a lipídios (TBARS) e proteínas (Carbonil) em nenhum dos tempos de exposição. Estes resultados sugerem um aumento nos níveis de radicais livres e de danos aos ácidos nucléicos. Estudos posteriores deverão determinar se estes efeitos apresentam ou não associações do tipo causa e efeito. Foram utilizados três modelos com ratos. No primeiro modelo, animais com idades de 30, 80 e 210 dias foram expostos por 6 dias (7:30 h/dia). Não foram encontradas mudanças nos parâmetros de TRAP, TBARS e Carbonil em nenhuma das idades expostas ao CEMUAF. Estes resultados sugerem que os tempos de exposição utilizados não foram suficientes para causar alguma mudança perceptível nos parâmetros de estresse oxidativo. No segundo modelo, utilizou-se o sangue e fígado dos neonatos expostos ao CEMUAF ainda no útero de suas mães durante todo o seu desenvolvimento embrionário (8:30 h/dia). Não foram encontradas mudanças em nenhum parâmetro oxidativo. Foi encontrado um aumento na freqüência de MN nas hemácias, sugerindo um efeito genotóxico da irradiação do celular afetando o tecido hematopoiético dos fetos. No terceiro modelo, utilizou-se o sangue de ratos adultos (180 dias) expostos por 12 dias (8:30 h/dia). Os níveis da hidrólise de ATP e ADP estavam aumentados no grupo irradiado. Nenhum efeito foi observado nas atividades da SOD e da CAT, sugerindo nenhuma participação de radicais livres nestes resultados. Ainda são necessários muitíssimos estudos para determinar quais os mecanismos transdutores dos CEMUAFs em sistemas biológicos e de que forma esta interação ocorre, porém estes resultados sugerem: (a) um papel para os radicais livres sobre, pelo menos, alguns dos efeitos atribuídos aos CEMUAFs e (b) que os organismos em fase de formação podem ser mais sensíveis aos campos. Por fim, sugerimos que sistemas biológicos podem sofrer a ação da irradiação com uma quantidade de energia muito menor do que a esperada para promover algum efeito no metabolismo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies made with polysaccharides of seaweed have demonstrated that these present important biological and pharmacological activities. These composites had presented "scavenging" activity of free radicals, which is important in the mediation of the inflammatory process and in the pathology of diverse disease. Recently, this "scavenging" property has taken some researches to evaluate the antioxidant capacity from various polysaccharides. Considering the limited research with polysaccharides and knowing its largely employed by the pharmaceutical and foodstuffs industries, we have objective to verify the actions from fucans and galactans as antioxidants. The fucans are found in brown seaweed and the galactans (carrageenans) in red seaweed. The fucans were obtained from seaweed Padina gymnospora (F0.5 e F1.1 fractions), common to our coastline and one another fucan, fucoidan, was of origin commercial and extracted from seaweed Fucus vesiculosus. The λ, κ e ι carrageenans were also of origin commercial. The antioxidant activities were tested in superoxide and hydroxyl systems to generated free radicals and for the inhibition of the lipid peroxidation. The results obtained to inhibition of formation the superoxide radicals demonstrated that all polysaccharides presented scavenging activity of superoxide radicals. The fucoidan, F0.5 and F1.1 fractions presented IC50 of 0.058; 0.243 and 0.243 mg/mL, respectively, while IC50 of the λ, κ and ι carrageenans were 0.046; 0.112 and 0.332 mg/mL, respectively. The results to inhibition of formation the hydroxyl radicals demonstrated that all sample had low effect in the inhibition of the formation of these radicals, except the F0.5. For these radicals the IC50 were 0.157 and 0.353 mg/mL to the fucoidan and F1.1, respectively and 0.357; 0.335 and 0.281 mg/mL to λ, κ and ι carrageenans, respectively. All the samples were capacity to inhibition the peroxidation, it present the IC50 of 1.250; 2.753 and 2.341 mg/mL to fucoidan, F0.5 and F1.1, respectively. Already the λ, κ and ι carrageenans presented the IC50 of 2.697; 0.323 and 0.830 mg/mL, respectively. With these findings, we conclude that polysaccharides used in this study presented activity antioxidant, and that fucoidan and the λ carrageenan show a significant "scavenging" activity for the radicals superoxide and the κ carrageenan a significant inhibitory activity for the lipid peroxidation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, extracts rich-sulfated polysaccharides were obtained from three different species of Dictyotales (a class of brown macroalgae): Canistrocarpus cervicornis, Dictyota mertensii and Dictyopteris delicatula and their anticoagulant and antioxidant activities were evaluated. All extracts showed anticoagulant activity on aPTT assay, but not on PT assay. Extracts also exhibited total antioxidant activity, superoxide radical scavenging capacity and ferric chelating property. The extract from C. cervicornis showed the best results and was choose to have their sulfated polysaccharides fractioned and subsequently analysed. Thus, six fractions (CC-0.3, CC-0.5, CC-0.7, CC-1.0, CC-1.2 and CC-2.0) were obtained by proteolysis followed by sequential acetone precipitation. Agarose gel eletrophoresis stained with blue toluidine, confirmed the presence of sulfated polysaccharides in all fractions. Chemical analyses showed that all fractions presented heterofucans mainly constitued by fucose, galactose, glucuronic acid and sulfate. Any fraction changed the PT. However, all fractions were able to double the aPTT on a dose-dependent manner. CC- 0.3, CC-0.5, CC-0.7 and CC-1.0 needed only 0.100 mg/mL to double the aPTT, result only 1.25 times higher than the Clexane® (0.080 mg/mL), a commercial low molecular heparin. The heterofucans presented appreciable total antioxidant capacity, low capacity on scavenging hydroxyl radical and good efficiency on scavenging superoxide radicals (except CC-1.0). CC-1.2 showed 43.1 % on superoxide radical scavenging. This result was higher than that showed by the same concentration of gallic acid (41.8 %), a known antioxidant. Furthermore, the heterofucans showed excelent activity on ferrous chelating activity (except CC-0.3). CC-0.5, CC-0.7 and CC-1.0 showed the highest activities with 47.0 % of ferrous chelating activity, a result 2.0 times lesser than that exhibited by the same concentration of EDTA. These results clearly indicated the beneficial effects of heterofucans extracted from C. cervicornis as potential anticoagulant and antioxidant agents. However additional steps of purification, structural studies, besides in vivo experiments are needed for these fucans may be used as therapeutic agents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The species of the genus Marsdenia, Apocynaceae, are widely used in folk medicine of several countries. In Brazil is found several species belonging to this genus. The in vitro antioxidant, anticoagulant and antiproliferative activities were evaluated to aqueous extracts of stalk, leaf and root of Marsdenia megalantha. In the total antioxidant capacity assay (expressed as ascorbic acid equivalents) the stalk extract showed 76.0 mg/g, while leaf and root extracts 141.3 mg/g and 57.0 mg/g, respectively. The stalk and leaf extracts showed chelating activity around 40% at 1.5 mg/mL, while root extract, at the same concentration showed, 17%. Only the leaf extract showed a significant ability in superoxide scavenging (80% at 0.8 mg/mL). Any extract was able in scavenge hydroxyl, as well anticoagulant activity. The antiproliferative activity of the extracts was evaluated against HeLa tumor cell line. The extracts inhibited in a dose-dependent manner the cell growth. However, the leaf extract showed 80% of inhibition at 1.0 mg/mL, while stalk and root extracts inhibited 63% and 30%, respectively. To assess the mechanism of cell death caused by the leaf extract in HeLa, was performed flow cytometry and western blot. The results show that leaf extract induces cell death by apoptosis through an activation caspase-independent pathway. These data indicate that stalk and leaf extracts obtained have potential to be used as antioxidants and anticancer drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target