892 resultados para Sun: UV Radiation
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBG) in multimode fibre (MMF) has been side-detected with high spatial spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Purpose: Autofluorescence of ultraviolet (UV) light has been shown to occur in localised areas of the bulbar conjunctiva, which map to active cellular changes due to UV and environmental exposure. This study examined the presence of conjunctival UV autofluorescence in eye care practitioners (ECPs) across Europe and the Middle East and its associated risk factors. Method: Images were captured of 307 ECPs right eyes in the Czech Republic, Germany, Greece, Kuwait, Netherlands, Sweden, Switzerland, United Arab Emirates and the United Kingdom using a Nikon D100 camera and dual flash units through UV filters. UV autofluorescence was outlined using ImageJ software and the nasal and temporal area quantified. Subjects were required to complete a questionnaire on their demographics and lifestyle including general exposure to UV and refractive correction. Results: Average age of the subjects was 38.5±12.2 years (range 19-68) and 39.7% were male. Sixty-two percent of eyes had some conjunctival damage as indicated by UV autofluorescence. The average area of damage was higher (p=0.005) nasally (2.95±4.52mm2) than temporally (2.19±4.17mm2). The area of UV damage was not related to age (r=0.03, p=0.674), gender (p=0.194), self-reported sun exposure lifestyle (p>0.05), geographical location (p=0174), sunglasses use (p>0.05) or UV-blocking contact lens use (p>0.05), although it was higher in those wearing contact lenses with minimal UV-blocking and no spectacles (p=0.015). The area of UV damage was also less nasally in those who wore contact lenses and spectacles compared to those with no refractive correction use (p=0.011 nasal; p=0.958 temporal). Conclusion: UV conjunctival damage is common even in Europe, Kuwait and UAE, and among ECPs. The area of damage appears to be linked with the use of refractive correction, with greater damage nasally than temporally which may be explained by the peripheral light focusing effect.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Resumo:
In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm**-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm**-2 and 397 Wm**-2, respectively, this leaves 106 Wm**-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm**-2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.
Resumo:
One of the research programs carried out within the Czech-Ukrainian scientific co-operation is the monitoring of global solar and ultraviolet radiation at the Vernadsky Station (formerly the British Faraday Station), Antarctica. Radiation measurements have been made since 2002. Recently, a special attention is devoted to the measurements of the erythemally effective UVB radiation using a broadband Robertson Berger 501 UV-Biometer (Solar Light Co. Inc., USA). This paper brings some results from modelling the daily sums of erythemally effective UVB radiation intensity in relation to the total ozone content (TOC) in atmosphere and surface intensity of the global solar radiation. Differences between the satellite- and ground-based measurements of the TOC at the Vernadsky Station are taken into consideration. The modelled erythemally effective UVB radiation differed slightly depending on the seasons and sources of the TOC. The model relative prediction error for ground- and satellite-based measurements varied between 9.5% and 9.6% in the period of 2002-2003, while it ranged from 7.4% to 8.8% in the period of 2003-2004.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
Introducción: La incidencia del cáncer de piel melanoma y no melanoma es un problema de salud pública a nivel mundial. El incremento en la incidencia del cáncer de piel en los últimos años se debe a múltiples factores como: cambios en los estilos de vida, el envejecimiento de la población, cambios ambientales, el desconocimiento a la exposición a la radiación ultravioleta (RUV) durante la práctica de actividad física sin elementos de fotoprotección, siendo éste último reconocido como el principal factor de riesgo. Objetivo: Evaluar los efectos de una intervención educativa en los conocimientos y comportamientos relacionados con la fotoprotección durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia. Métodos: Estudio de intervención, antes y después, no controlado en 281 estudiantes de los grados noveno, décimo y once de estratos 1-3 de un colegio público de Bogotá, con seguimiento a 1, 3 y 6 meses post-intervención. Se evaluaron los conocimientos y los hábitos de fotoprotección mediante un cuestionario Cancer Awareness Measure (CAM) y el modelo Transteórico de cambio comportamental de Prochaska y Di Clemente. El estudio se realizó durante el primer semestre de 2015 con 4 sesiones educativas de 60 minutos apoyadas con material audiovisual y pedagógico, acorde a la Guía para la Comunicación Educativa en el marco el control del cáncer publicada por el Instituto Nacional de Cancerología. Resultados: Del grupo de estudiantes que participaron del estudio, el 52,3% eran hombres, el promedio de edad fue de 15,46 ± 1,2 años. El tipo de piel predominante fue la trigueña con 65,8%. La intervención educativa produjo cambios significativos en los conocimientos de foto protección, finalizado el seguimiento al sexto mes. En cuanto a la prevención los estudiantes refirieron tener conocimiento de cómo examinar su piel en el momento basal (12,5% n=35), presentándose un aumento significativo de 62,6% (n=211) al sexto mes (p<0,05). Conclusión: El estudio demostró la efectividad de la intervención educativa, evidenciando cambios significativos en los conocimientos en fotoprotección y comportamientos preventivos del cáncer de piel durante la práctica de la actividad física en estudiantes de un colegio público de Bogotá D.C., Colombia.