948 resultados para Structure change
Resumo:
In the title compound, C(11)H(7)NO(4), there is a dihedral angle of 45.80 (7)degrees between the planes of the benzene and maleimide rings. The presence of O-H...O hydrogen bonding and weak C-H...O interactions allows the formation of R (3) 3(19) edge-connected rings parallel to the (010) plane. Structural, spectroscopic and theoretical studies were carried out. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) and 6-31++G(d,p) levels are compared with the experimentally determined molecular structure in the solid state. Additional IR and UV theoretical studies allowed the presence of functional groups and the transition bands of the system to be identified.
Resumo:
This work reports on the magnetic properties of Ge(100-x)Mn(x) (x=0-24 at. %) films prepared by cosputtering a Ge+Mn target and submitted to cumulative thermal annealing treatments up to 500 degrees C. Both as-deposited and annealed films were investigated by means of compositional analysis, Raman scattering spectroscopy, magnetic force microscopy, superconducting quantum interference device magnetometry, and electrical resistivity measurements. All as-deposited films (either pure or containing Mn) exhibit an amorphous structure, which changes to crystalline as the annealing treatments are performed at increasing temperatures. In fact, the magnetic properties of the present Ge(100-x)Mn(x) films are very sensitive to the Mn content and whether their atomic structure is amorphous or crystalline. More specifically: whereas the amorphous Ge(100-x)Mn(x) films (with high x) present a characteristic spin glass behavior at low temperature; after crystallization, the films (with moderate Mn contents) are ferromagnetic at room temperature. Moreover, the magnetic behavior of the films scales with their Mn concentration and tends to be more pronounced after crystallization. Finally, the semiconducting behavior of the films, experienced by previous optical studies, was confirmed through electrical measurements, which also indicate the dependence of the resistivity with the atomic composition of the films. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3520661]
Resumo:
The emission energy dependence of the photoluminescence (PL) decay rate at room temperature has been studied in Si nanoclusters (Si-ncl) embedded in Si oxide matrices obtained by thermal annealing of substoichiometric Si oxide layers Si(y)O(1-y), y=(0.36,0.39,0.42), at various annealing temperatures (T(a)) and gas atmospheres. Raman scattering measurements give evidence for the formation of amorphous Si-ncl at T(a)=900 degrees C and of crystalline Si-ncl for T(a)=1000 degrees C and 1100 degrees C. For T(a)=1100 degrees C, the energy dispersion of the PL decay rate does not depend on sample fabrication conditions and follows previously reported behavior. For lower T(a), the rate becomes dependent on fabrication conditions and less energy dispersive. The effects are attributed to exciton localization and decoherence leading to the suppression of quantum confinement and the enhancement of nonradiative recombination in disordered and amorphous Si-ncl. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457900]
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the two heterometallic oxyborates: Co(2)FeO(2)BO(3) and Ni(2)FeO(2)BO(3). This has been carried out through x-ray diffraction at room temperature (RT) and 150 K, dc and ac magnetic susceptibilities, and specific-heat experiments in single crystals above 2 K. The magnetic properties of these iron ludwigites are discussed in comparison with those of the other two known homometallic ludwigites: Fe(3)O(2)BO(3) and Co(3)O(2)BO(3). In both ludwigites now studied we have found that the magnetic ordering of the Fe(3+) ions occurs at temperatures very near to which they order in Fe(3)O(2)BO(3). A freezing of the divalent ions (Co and Ni) is observed at lower temperatures. Our x-ray diffraction study of both ludwigites at RT and 150 K showed very small ionic disorder in apparent contrast with the freezing of the divalent ion spins. The structural transition that occurs in homometallic Fe(3)O(2)BO(3) has not been found in the present mixed ludwigites in the temperature range investigated.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.
Resumo:
The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission.
Resumo:
An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star gamma Cassiopeiae. By now we know that this source and several ""gamma Cas analogs"" exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kT(Q) similar to 12-14 keV, perhaps one with a value of similar to 2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are similar to 1.5-3x and similar to 4x solar, respectively), and broadening of the strong NeXLy alpha and OVIII Ly alpha lines. In addition, we note certain traits in the gamma Cas spectrum that are different from those of the fairly well studied analog HD110432 - in this sense the stars have different ""personalities."" In particular, for gamma Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of the X-ray plasmas can change dramatically. As found by previous investigators of gamma Cas, changes in flux, whether occurring slowly or in rapidly evolving flares, are only seldomly accompanied by variations in hardness. Moreover, the light curve can show a ""periodicity"" that is due to the presence of flux minima that recur semiregularly over a few hours, and which can appear again at different epochs.
Resumo:
In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.
Resumo:
In this work, we employed the effective coordination concept to study the local environments of the Ge, Sb, and Te atoms in the Ge(m)Sb(2n)Te(m+3n) compounds. From our calculations and analysis, we found an average effective coordination number (ECN) reduction of 1.59, 1.42, and 1.37, for the Ge, Sb, Te atoms in the phase transition from crystalline, ECN=5.55 (Ge), 5.73 (Sb), 4.37 (Te), to the amorphous phase, ECN=3.96 (Ge), 4.31 (Sb), 3.09 (Te), for the Ge(2)Sb(2)Te(5) composition. Similar changes are observed for other compositions. Thus, our results indicate that the coordination changes from the crystalline to amorphous phase are not large as previously assumed in the literature, i.e., from sixfold to fourfold for Ge, which can contribute to obtain a better understanding of the crystalline to amorphous phase transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3533422]
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
A synergic effect of amylose on rheological characteristics of lysozyme physical gels evolved out of dimethylsulfoxide-water was verified and analyzed. The dynamics of the gels were experimentally approached by oscillatory rheology. The synergic effect was characterized by a decrease in the threshold DMSO volume fraction required for lysozyme gelation, and by a significant strengthening of the gel structure at over-critical solvent and protein concentrations. Drastic changes in the relaxation and creep curve patterns for systems in the presence of amylose were verified. Complex viscosity dependence on temperature was found to conform to an Arrhenius-like equation, allowing the determination of an activation energy term (Ea, apparent) for discrimination of gel rigidity. A dilatant effect was found to be induced by temperature on the flow behavior of lysozyme dispersions in DMSO-H(2)O in sub-critical conditions for gelation, which was greatly intensified by the presence of amylose in the samples. That transition was interpreted as reflecting a change from a predominant colloidal flow regime, where globular components are the prevailing structural elements, to a mainly fibrillar, polymeric flow behavior.
Resumo:
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.