980 resultados para Structural traps (Petroleum geology)
Resumo:
Noradrenaline which occurs naturally in the body binds to beta-adrenoceptors on the heart, causing the heart to beat faster and with greater force in response to increased demand. This enables the heart to provide oxygenated blood to vital organs. Prolonged overstimulation by noradrenaline can be harmful to the heart and lead to the progression of heart disease. In these circumstances beta-adrenoceptors are blocked with drugs called beta-blockers. Beta-blockers block the effects of noradrenaline by binding to the same site on the beta-adrenoceptor. Some beta-blockers such as CGP12177 can also cause increases in heart rate. Therefore it was proposed that CGP12177 could bind in a different place to noradrenaline. The aim of this study was to determine where CGP12177 binds to on the beta-adrenoceptor. The results have revealed a separate binding site named beta-1-low. These results may lead to the development of improved -blockers for the management of heart conditions.
Freshwater sensitivity of corrensite and chlorite/smectite in hydrocarbon reservoirs - an ESEM study
Resumo:
An Environmental Scanning Electron Microscope (ESEM) has been used to investigate the freshwater sensitivity of secondary corrensite (regularly interstratified chlorite/smectite) and chlorite-rich chlorite/smectite in order to determine whether hydrocarbon reservoirs hosting these clays should be regarded as freshwater sensitive. ESEM experiments involved an examination and close comparison of selected clay areas in three samples at high magnification before, during and after prolonged freshwater treatments. Corrensite and chlorine/smectite in the samples did not visibly swell when immersed in fresh water. After soaking in fresh water for up to three months, these clays retained their original morphology and associated porosity. Hence, the presence of corrensite or chlorite/smectite in a hydrocarbon reservoir need not indicate that the reservoir is freshwater sensitive. © 1994.
Resumo:
The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. (C) 1993 Wiley-Liss, Inc.
Resumo:
Experiments were carried out on the sodium hypochlorite bleach sensitivity of a deep subsurface andesitic reservoir in order to predict possible deleterious mineral transformations during a downhole clean-up job. Experiments involved examination of core samples from the reservoir using an Environmental Scanning Electron Microscope (ESEM) with an attached Energy Dispersive Spectrometer (EDS) before and after the samples were immersed in bleach. Bleach immersion of whole-rock samples resulted in rapid (less than 1 min) precipitation of abundant 3.0-10.0-μm-wide calcite rhombs within clay-associated micropores and on clay and feldspar grain surfaces. Abundant microporefilling calcite rhombs also formed in pure separates of constituent chlorite/corrensite, whereas no calcite formed in a pure separate of constituent zeolite. These experiments indicate that corrensite is the likely calcium source in this experimental fluid-rock system. Formation of calcite occurs via a cation exchange reaction in which calcium in the smectitic interlayers of corrensite exchanges for sodium in the bleach. Serious formation damage due to calcite precipitation would have occurred in the andesite reservoir had it been exposed to bleach. This finding gives credence to earlier suggestions that cation exchange reactions have the potential to cause calcite precipitation in some sandstone reservoirs when exposed to drilling, completion or stimulation fluids. © 1993.
Resumo:
The water sensitivity of authigenic smectite- and illite-rich illite/smectites in sandstone reservoirs has been investigated using an Environmental Scanning Electron Microscope (ESEM). The ESEM enabled the illite/smectites to be directly observed in situ at high magnification during freshwater immersion, and was also particularly effective in allowing the same selected illite/smectite areas to be closely compared before and after freshwater treatments. The tendency of authigenic smectite-rich illite/smectite to swell on contact with fresh water varies greatly. Smectite-rich illite/smectite may osmotically swell to many times its original volume to form a gel which greatly reduces porosity and permeability, or may undergo only a subtle morphological change which has little or no adverse effect on reservoir quality. Authigenic illite-rich illite/smectite in sandstones does not swell when immersed in fresh water. Even after prolonged soaking in fresh water, illite-rich illite/smectite particles retain their original morphology. Accordingly, illite-rich illite/smectite in sandstones is unlikely to cause formation damage if exposed to freshwater-based fluids. © 1993.
Resumo:
High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.
Resumo:
Shared services are increasingly prevalent in practice, their introduction potentially entailing substantive and highly consequential organizational redesign. Yet, attention to the structural arrangements of shared services has been limited. This study explores types of structural arrangements for shared services that are observed in practice, and the salient dimensions along which those types can be usefully differentiated. Through inductive attention to the shared services literature, and content analysis of 36 secondary case studies of shared services in the higher education sector, three salient dimensions emerged: (1) the existence or not of a separate organizational entity, (2) an intra- or inter-organizational sharing boundary, and (3) involvement or not of a third party. Each dimension being dichotomous yields 23 combinations, or eight shared services structural arrangement types. Each of the eight structural arrangement types is defined and demonstrated through case examples. The typology offers clarity around shared services structural arrangements. It can serve as a useful analytical tool for researchers investigating the phenomenon further, and for practitioners considering the introduction or further development of shared services arrangements. Important follow on research is suggested too.
Resumo:
Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly
Resumo:
Selected chrysocolla mineral samples from different origins have been studied by using PXRD, SEM, EDX and XPS. The XRD patterns show that the chrysocolla mineral samples are non-diffracting and no other phases are present in the minerals, thus showing the chrysocolla samples are pure. SEM analyses show the chrysocolla surfaces are featureless. EDX analyses enable the formulae of the chrysocolla samples to be calculated. The thermal decomposition of the mineral chrysocolla has been studied using a combination of thermogravimetric analysis and derivative thermogravimetric analysis. Five thermal decomposition mass loss steps are observed for the chrysocolla from Arizona (a) at 125 ◦C with the loss of water, (b) at 340 ◦C with the loss of hydroxyl units, (c) at 468.5 ◦C with a further loss of hydroxyls, (d) at 821 ◦C with oxygen loss and (e) at 895 ◦C with a further loss of oxygen. The thermal analysis of the chrysocolla from Congo shows mass losses at 125, 275.3, 805.6 and 877.4 ◦C and for the Nevada chrysocolla, mass loss steps at 268, 333, 463, 786.0 and 817.7 ◦C are observed. The thermal analysis of spertiniite is very different from that of chrysocolla and thermally decomposes at around 160 ◦C. XPS shows that there are two different copper species present, one which is bonded to oxygen and one to a hydroxyl unit. The O 1s is broad and very symmetrical suggesting two O species of equal number. The bond energy of 102.9 eV for the Si 2p suggests that it is in the form of a silicate. The bond energy is much higher for silicas around ∼103.5 eV. The reported value for silica gel has Si 2p at 103.4 eV. The combination of TG, PXRD, EDX and XPS adds to our fundamental knowledge of the structure of chrysocolla.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
Research in construction innovation highlights construction industry as having many barriers and resistance to innovations and suggests that it needs champions. A hierarchical structural model is presented, to assess the impact of the role of the project manager (PM) on the levels of innovation and project performance. The model adopts the structural equation modelling technique and uses the survey data collected from PMs and project team members working for general contractors in Singapore. The model fits well to the observed data, accounting for 24%, 37% and 49% of the variance in championing behaviour, the level of innovation and project performance, respectively. The results of this study show the importance of the championing role of PMs in construction innovation. However, in order to increase their effectiveness, such a role should be complemented by their competency and professionalism, tactical use of influence tactics, and decision authority. Moreover, senior management should provide adequate resources and a sustained support to innovation and create a conducive environment or organizational culture that nurtures and facilitates the PM’s role in the construction project as a champion of innovation.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
Modified montmorillonite was prepared at different surfactant (HDTMA) loadings through ion exchange. The conformational arrangement of the loaded surfactants within the interlayer space of MMT was obtained by computational modelling. The conformational change of surfactant molecules enhance the visual understanding of the results obtained from characterization methods such as XRD and surface analysis of the organoclays. Batch experiments were carried out for the adsorption of p-chlorophenol (PCP) and different conditions (pH and temperature) were used in order to determine the optimum sorption. For comparison purpose, the experiments were repeated under the same conditions for p-nitrophenol (PNP). Langmuir and Freundlich equations were applied to the adsorption isotherm of PCP and PNP. The Freundlich isotherm model was found to be the best fit for both of the phenolic compounds. This involved multilayer adsorptions in the adsorption process. In particular, the binding affinity value of PNP was higher than that of PCP and this is attributable to their hydrophobicities. The adsorption of the phenolic compounds by organoclays intercalated with highly loaded surfactants was markedly improved possibly due to the fact that the intercalated surfactant molecules within the interlayer space contribute to the partition phases, which result in greater adsorption of the organic pollutants.
Resumo:
Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N2 and CO2 adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (<2000 Å), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N2 and CO2 adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N2 and CO2-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.
Resumo:
Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (∼25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (<25 nm) were accessible to CD4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases.