844 resultados para Strasbourg (Diocese)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonsense-mediated mRNA decay (NMD) pathway is best known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with ORF-truncating premature termination codons (PTCs), but a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD substrates. We try to decipher the mechanism of mRNA targeting to the NMD pathway in human cells. Recruitment of the conserved RNA-binding helicase UPF1 to target mRNAs has been reported to occur through interaction with release factors at terminating ribosomes, but evidence for translation-independent interaction of UPF1 with the 3’ untranslated region (UTR) of mRNAs has also been reported. We have transcriptome-wide determined the UPF1 binding sites by individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) in human cells, untreated or after inhibiting translation. We detected a strongly enriched association of UPF1 with 3’ UTRs in undisturbed, translationally active cells. After translation inhibition, a significant increase in UPF1 binding to coding sequence (CDS) was observed, indicating that UPF1 binds RNA before translation and gets displaced from the CDS by translating ribosomes. This suggests that the decision to trigger NMD occurs after association of UPF1 with mRNA, presumably through activation of RNA-bound UPF1 by aberrant translation termination. In a second recent study, we re-visited the reported restriction of NMD in mammals to the ‘pioneer round of translation’, i.e. to cap-binding complex (CBC)-bound mRNAs. The limitation of mammalian NMD to early rounds of translation would indicate a – from an evolutionary perspective – unexpected mechanistic difference to NMD in yeast and plants, where PTC-containing mRNAs seem to be available to NMD at each round of translation. In contrast to previous reports, our comparison of decay kinetics of two NMD reporter genes in mRNA fractions bound to either CBC or the eukaryotic initiation factor 4E (eIF4E) in human cells revealed that NMD destabilizes eIF4E-bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cet article traite de l’influence d’un secteur ou d’une industrie dans l’économie nationale et de la manière dont il/elle peut influencer des secteurs et des technologies connexes. L’exemple choisi est constitué par l’industrie pharmaceutique suisse. L’article suggère que cette industrie a façonné le développement et la distribution spatiale des secteurs qui lui étaient liés, tels que les biotechnologies (biotech) et les technologies médicales (medtech). Il est supposé que cette influence diffère significativement selon l’extension géographique. Elle est manifeste à l’échelon national, dans la mesure où les biotech et les medtech ont bénéficié d’institutions nationales façonnées par l’industrie pharmaceutique. Les effets de cette industrie devraient également se faire sentir au niveau régional, notamment à Bâle où l’industrie pharmaceutique est concentrée, par le biais des créations d’entreprises et des liens d’affaires avec l’industrie pharmaceutique. Ces aspects sont abordés dans le cadre théorique des systèmes d’innovation nationaux et régionaux, en termes d’évolution, de dépendance au sentier et d’interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasitic protozoon Trypanosoma brucei is one of the earliest branching eukaryotes that have mitochondria capable of oxidative phosphorylation. Their protein import systems are of similar complexity yet different composition than those in other eukaryotes. To elucidate the composition of the trypanosomal translocase of the inner mitochondrial membrane (TIM) we performed CoIPs of epitope-tagged TbTim17 and two other candidates in combination with SILAC-based quantitative mass spectrometry. This led to the identification of ten candidates for core TIM subunits. Eight of them were present in the previously determined inner membrane proteome and four show homology to small Tim chaperones. Three candidates, a trypanosomatid-specific 42 kDa protein (Tim42) and two putative orthologues of inactive rhomboid proteases were analyzed further. All three proteins are essential in both life cycle stages and their ablation results in a strong protein import defect in vivo and in vitro. Blue native PAGE revealed their presence in a high molecular weight complex. Unlike anticipated, trypanosomes have a highly complex TIM translocase that has extensively been redesigned. None of the three novel TIM subunits has ever been associated with mitochondrial protein import. Two of them belong to the rhomboid protease family, a member of which recently has been implicated in the ERAD translocation system. This suggests an exciting analogy between protein translocases of mitochondria and the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multisubunit ATOM complex mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial matrix proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein insertase acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis furthermore shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the mtDNA; also called kinetoplast or kDNA; as it forms a physical connection between the kDNA and the basal body of the single flagellum throughout the cell cycle. Thus, the presence of pATOM36 in the TAC provides an exciting link between mitochondrial protein import and kDNA inheritance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

par George Büchner, lu à la Société d'histoire naturelle de Strasbourg, dans les séances du 13 Avril, du 20 Avril et du 4 Mai 1836

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F11788