941 resultados para Stewart-Gough platform (SGP)
Resumo:
The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.
Resumo:
In recent years, the formerly oligopolistic Enterprise Application Software (EAS) industry began to disintegrate into focal inter-firm networks with one huge, powerful, and multi-national plat-form vendor as the center, surrounded by hundreds or even thousands of small, niche players that act as complementors. From a theoretical point of view, these platform ecosystems may be governed by two organizing principles - trust and power. However, it is neither from a practical nor from a theoretical perspective clear, how trust and power relate to each other, i.e. whether they act as complements or substitutes. This study tries to elaborate our understanding of the relationship of trust and power by exploring their interplay using multi-dimensional conceptual-izations of trust and power, and by investigating potential dynamics in this interplay over the course of a partnership. Based on an exploratory multiple-case study of seven dyadic partner-ships between four platform vendors, and seven complementors, we find six different patterns of how trust and power interact over time. These patterns bear important implications for the suc-cessful management of partnerships between platform vendors and complementors, and clarify the theoretical debate surrounding the relationship of trust and power.
Resumo:
One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
This study reports on a microfluidic platform on which single multicellular spheroids from malignant pleural mesothelioma (MPM), an aggressive tumor with poor prognosis, can be loaded, trapped and tested for chemotherapeutic drug response. A new method to detect the spheroid viability cultured on the microfluidic chip as a function of the drug concentration is presented. This approach is based on the evaluation of the caspase activity in the supernatant sampled from the chip and tested using a microplate reader. This simple and time-saving method does only require a minimum amount of manipulations and was established for very low numbers of cells. This feature is particularly important in view of personalised medicine applications for which the number of cells obtained from the patients is low. MPM spheroids were continuously perfused for 48 hours with cisplatin, one of the standard chemotherapeutic drugs used to treat MPM. The 50% growth inhibitory concentration of cisplatin in perfused MPM spheroids was found to be twice as high as in spheroids cultured under static conditions. This chemoresistance increase might be due to the continuous support of nutrients and oxygen to the perfused spheroids.
Resumo:
The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.
Resumo:
BACKGROUND AND PURPOSE Eligibility criteria are a key factor for the feasibility and validity of clinical trials. We aimed to develop an online tool to assess the potential effect of inclusion and exclusion criteria on the proportion of patients eligible for an acute stroke trial. METHODS We identified relevant inclusion and exclusion criteria of acute stroke trials. Based on these criteria and using a cohort of 1537 consecutive patients with acute ischemic stroke from 3 stroke centers, we developed a web portal feasibility platform for stroke studies (FePASS) to estimate proportions of eligible patients for acute stroke trials. We applied the FePASS resource to calculate the proportion of patients eligible for 4 recent stroke studies. RESULTS Sixty-one eligibility criteria were derived from 30 trials on acute ischemic stroke. FePASS, publicly available at http://fepass.uni-muenster.de, displays the proportion of patients in percent to assess the effect of varying values of relevant eligibility criteria, for example, age, symptom onset time, National Institutes of Health Stroke Scale, and prestroke modified Rankin Scale, on this proportion. The proportion of eligible patients for 4 recent stroke studies ranged from 2.1% to 11.3%. Slight variations of the inclusion criteria could substantially increase the proportion of eligible patients. CONCLUSIONS FePASS is an open access online resource to assess the effect of inclusion and exclusion criteria on the proportion of eligible patients for a stroke trial. FePASS can help to design stroke studies, optimize eligibility criteria, and to estimate the potential recruitment rate.
Resumo:
Purpose.This retrospective cohort study evaluated factors for peri-implant bone level changes (ΔIBL) associated with an implant type with inner-cone implant-abutment connection, rough neck surface, and platform switching (AT). Materials and Methods. All AT placed at the Department of Prosthodontics of the University of Bern between January 2004 and December 2005 were included in this study. All implants were examined by single radiographs using the parallel technique taken at surgery (T0) and obtained at least 6 months after surgery (T1). Possible influencing factors were analysed first using t-test (normal distribution) or the nonparametric Wilcoxon test (not normal distribution), and then a mixed model q variance analysis was performed. Results. 43 patients were treated with 109 implants. Five implants in 2 patients failed (survival rate: 95.4%).Mean ΔIBL in group 1 (T1: 6–12 months after surgery) was −0.65 ± 0.82mm and −0.69 ± 0.82mm in group 2 (T1: >12 months after surgery) (
Resumo:
We investigated the influence of playing a video game on children’s ability to distinguish between fantasy and reality. School-age children played a platform game for 15 min and then performed a fantasy/reality distinction task in which they were to judge whether images (from the platform game and from other games) were fantasy images or reality images. Unlike those in the control group (who played a memory game), the children in the experimental group showed a response bias toward mistakenly classifying reality images from the video game as fantasy images (as determined by means of an analysis based on signal detection theory). We conclude that playing the video game exerted a short-term influence on children’s ability to distinguish between fantasy and reality.
Resumo:
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software’s modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.DOI: http://dx.doi.org/10.7554/eLife.05864.001Author keywordsResearch organism
Resumo:
Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.
Resumo:
The paper describes the architecture of the Martian Gas Analytic Package, which is proposed for the Russian ExoMars Lander 2018.