972 resultados para Steel structures
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784. Errata disponível no RepositóriUM em: http://hdl.handle.net/1822/40064. (Publisher’s note: An erratum that addressed the errors in Figure 9 was originally published on Dec. 10, 2014, however the graphs in that erratum were not correct.)
Resumo:
High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.
Resumo:
Zeolites Y (faujasite) and MOR (mordonite) were used as hosts for temozolomide (TMZ), a current good-standard chemotherapeutic agent used in the treatment of glioblastoma brain tumors. TMZ was loaded into zeolites by liquid-phase adsorption at controlled pH. FTIR, 1H NMR, MS, SEM, UV/vis and chemical analysis demonstrated the successful loading of TMZ into zeolite hosts. The hydrolysis of TMZ in MTIC (TMZ metabolite) after the preparation of drug delivery systems (DDS) was observed in simulated body fluid. The effect of zeolites and DDS were evaluated on the viability of glioblastoma cell lines. Unloaded Y zeolite presented toxicity to cancer cells in contrast to MOR. In accordance, the best results in potentiation of the TMZ effect was obtained with MOR. We found that mordonite loaded with 0.026 mmol of TMZ was able to decrease the half maximal inhibitory concentrations (IC50) at least 3-fold in comparison to free temozolomide both in vitro and in vivo.
Resumo:
Degree of Doctor of Philosophy of Structural/Civil Engineering
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.
Resumo:
The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Engenharia Têxtil
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Resumo:
El control de propiedades hidrodinámicas capaces de influir en la mecánica de ruptura y poración de sistemas lamelares o membranas es de fundamental interés para diferentes aplicaciones biotecnológicas. Resulta de particular interés la conexión entre los procesos microscópicos relacionados al tipo de moléculas o unidades básicas, el orden determinado en el auto-ensamblado de las mismas y la dinámica local del sistema, con las propiedades físicas que determinan el comportamiento macroscópico bajo estimulación acústica. Resultados logrados recientemente sugieren la existencia de resonancias hidrodinámicas que podrian ser utilizadas para lograr la inestabilidad del sistema a baja potencia acústica. Se realizaran estudios experimentales utilizando principalmente técnicas que combinan resonancia magnética nuclear (RMN) y la sonicación de la muestra. También se realizarán estudios teóricos y simulaciones numéricas que permitan modelar los sistemas bajo estudio. Se propone dar continuidad al desarrollo de una técnica de relaxometría magnética nuclear en la cual se estimula acústicamente a la muestra durante el proceso de relajación magnética nuclear, y continuar la implementación de técnicas de RMN con resolución espacial que permitan complementar los estudios mencionados. Se espera comprender los mecanismos físicos que determinan la estabilidad de fases lamelares, logrando un modelo verificable y consistente que permita relacionar las propiedades mecánicas e hidrodinámicas con las propiedades de orden y dinámica molecular. Asimismo, se espera lograr avances en el desarrollo de las técnicas experimentales involucradas. La importancia del proyecto radica en el enfoque del problema. A diferencia de casi la totalidad de los estudios reportados, nuestro interés se enfoca en mecanismos de interacción entre la membrana y el campo acústico que sean eficientes a baja potencia acústica, en un régimen donde los gradientes térmicos y la cavitación sean despreciables.