595 resultados para Stabilised zirconia
Resumo:
The drop in Ukraine’s GDP by nearly 18% in the first three months of 2015 (versus the corresponding period in 2014) has confirmed the decline of the country’s economy. Over the last 14 months, the Ukrainian currency was subject to an almost threefold devaluation against the US dollar, and in April 2015 the inflation rate was 61% (year-on-year), which exacerbated the impoverishment of the general public and weakened domestic demand. The main reason behind the crisis has been the destruction of heavy industry and infrastructure in the war-torn Donbas region, over which Kyiv no longer has control, as well as a sharp decline in foreign trade (by 24% in 2014 and by 34% in the first quarter of 2015), recorded primarily in trading volume with Ukraine’s major trade partner, i.e. Russia (a drop of 43%). The conflict has also had a negative impact on the production figures for the two key sectors of the Ukrainian economy: agriculture and metallurgy, which account for approximately 50% of Ukrainian exports. The government’s response to the crisis has primarily been a reduction in the costs of financing the Donbas and an increase in the financial burden placed on the citizens and companies of Ukraine. No radical reforms which would encompass the entire system, including anti-corruption reforms, have been carried out to stop the embezzlement of state funds and to facilitate business activity. The reasons for not initiating reforms have included the lack of will to launch them, Ukraine’s traditionally slow pace of bureaucratic action and growing dissonance among the parties making up the parliamentary coalition. The few positive changes, including marketisation of energy prices and sustaining budgetary discipline (in the first quarter of 2015, budgetary revenues grew by 25%, though partly as a result of currency devaluation), are being carried out under pressure from the International Monetary Fund, which is making the payment of further loan instalments to the tune of US$ 17.5 billion conditional upon reforms. Despite assistance granted by Western institutional donors and by individual states, the risk of Ukraine going bankrupt remains real. The issue of restructuring foreign debt worth US$ 15 billion has not been resolved, as foreign creditors who hold Ukrainian bonds have not consented to any partial cancellation of the debt. Whether Ukraine’s public finances can be stabilised will depend mainly on the situation in the east of the country and on the possible renewal of military action. It seems that the only way to rescue Ukraine’s public finances from deteriorating further is to continue to ‘freeze’ the conflict, to gradually implement wide-ranging reforms and to reach a consensus in negotiations with lenders.
Resumo:
More than one year since the first pro-Russian moves in the Donbas, separatists have taken control of parts of the Donbas and Luhansk oblasts but are still unable to form truly functioning administrative structures. The exercise of power by the central administration of the so-called ‘Donetsk People’s Republic’ (DPR) and ‘Luhansk People’s Republic’ (LPR) is restricted to resolving problems as they arise, while administration proper is the prerogative of the local authorities reporting to them which had been performing this function before the conflict broke out. The way the situation is developing and the fact that access to information is restricted make it difficult to determine the structure of the separatist government in more detail, precisely how it is organised, and what the internal hierarchy is like. The overriding goal of the governments of the DPR and the LPR is to maintain and develop their military potential. In effect, the lives of the so-called republics are subordinate to military goals. The Donbas separatism is a conglomerate of different groups of interests, with Russia at the fulcrum. Its representatives set the main tactical and strategic goals and thus have a decisive influence on the development of the situation in the region. Individual separatist groupings come into conflict, and some oligarchs linked to the former Party of Regions circles have also been making attempts to maintain their influence. The struggle between individual groups of interest is intensifying as the situation on the war front becomes calmer. Since the situation has temporarily stabilised after the seizure of Debaltseve, the central governments of the DPR and the LPR have made attempts to expand their influence, combating armed criminals who are outside their control and that of Russia. The civilian population is taking the brunt of the devastation caused by the war and the increasing militarisation of the region. Despite the fact that the intensity of the fighting on the war front is falling, worsening humanitarian problems are causing refugees to continue their flight from the territories controlled by the separatists. 2 million people have fled the conflict zone since the beginning of the war: 1.3 million of them have found shelter in other regions of Ukraine, and more than 700,000 have left for Russia. The region has also sustained great economic losses – most mines have been either destroyed or closed, many industrial plants have restricted or completely discontinued their production, and many firms have been taken over by force. In effect, the region has seen an economic downturn.
Resumo:
The liberalisation of Eastern Europe’s market during the 1990s and the 2004 EU enlargement have had a great impact on the economies of Central and Eastern Europe (CEE). Indeed, prior to these events, the financial system and household credit markets in CEE were underdeveloped. Nonetheless, it appeared to numerous economists that the development of the CEE financial system and credit markets was following an intensely positive trend, raising the question of sustainability. Many variables impact the level and growth rate of credit; several economists point out that a convergence process might be one of the most important. Using a descriptive statistics approach, it seems likely that a convergence process began during the 1990s, when the CEE countries opened their economies. However, it also seems that the main driver of this household credit convergence process is the GDP per capita convergence process. Indeed, credit to households and GDP per capita have followed broadly similar tendencies over the last 20 years and it has been shown in the literature that they appear to influence each other. The consistency of this potential convergence process is also confirmed by the breakdown of household credit by type and maturity. There is a tendency towards similar household credit markets in Europe. However, it seems that this potential convergence process was slowed down by the financial crisis. Fortunately, the crisis also stabilised the share of loans in foreign currency in CEE countries. This might add more stability to credit markets in Eastern Europe.
Resumo:
ZrO2-Al2O3 composite oxides and supported Ni catalysts were prepared, and characterized by N-2 adsorption/desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO2 content. The Ni catalyst supported ZrO2-Al2O3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.
Resumo:
Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 muM, and inhibition is complete at about 10 muM. In this range, the tubulin assembly is fully ( up to 6 muM) or partially (similar to 6 - 10 muM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect-concentration for inhibition of microtubule assembly in vitro was 1 muM Hg2+, the IC50 5.8 muM. Mercury(II) salts at the IC50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a gliding assay'' mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 muM and a complete inhibition is reached at 1 muM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 muM HgCl2. Between 15 and 20 muM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 muM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations ( 100 muM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides that show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in application of these materials for low (500 degrees-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). To improve the conductivity in dysprosium (Dy) doped CeO2, nano-size round shape particles were prepared using a coprecipitation method. The dense sintered bodies with small grain sizes (< 300 nm) were fabricated using a combined process of spark plasma sintering (SPS) and conventional sintering (CS). Dy-doped CeO2 sintered body with large grains (1.1 mu m) had large micro-domains. The conductivity in the sintered body was low (-3.2 S/cm at 500 degrees C). On the other hand, the conductivity in the specimens obtained by the combined process was considerably improved. The micro-domain size in the grain was minimized using the present process. It is concluded that the enhancement of conductivity in dense specimens produced by the combined process (SPS+CS) is attributable to the microstructural changes within the grains.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months ( Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term ( 30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (N-o) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the Wet PPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R-2 = 0.96), although it was
Resumo:
The effects of modified atmosphere (MA) conditions on the quality of minimally processed pineapple slices were determined. Commercial pineapple slice packs sealed with 40 pm thick polyester film were kept at 4.5 degrees C for 14 d. The oxygen transmission rate of the film was 23 ml m(-2) day(-1) atm(-1) (at 25 degrees C, 75% RH). In-built atmospheres and the quality of the products were determined. O-2 concentrations within the packs stabilised at 2%, while CO2 concentrations increased to 70% by day 14. The high CO2 level suggested an inappropriate lidding film permeability for the product, and hence affected its quality. Three batches of pineapple slices were packed in the laboratory using lidding films with oxygen transmission rate of 75, 2790 or 5000 ml m(-2) day(-1) atm(-1) (at 23 degrees C, 0% RH). Headspace atmospheres from laboratory-packed pineapple slices suggested an optimum equilibrium modified atmosphere of ca. 2% O-2 and 15% CO2. Respiration data from the laboratory-prepared packs were pooled together and used to develop a correlation model relating respiration rates to O-2 and CO2 concentrations. The model showed a decrease in respiration rate with decreasing O-2 and increasing CO2 concentrations. Respiration rate stabilised at 2% 02 and 10% CO2. The high concentrations of CO2 observed in the commercial packs did not fit the range in the respiration model. The model could aid in selection of MA conditions for minimally processed pineapple fruit.
Resumo:
Defining the pharmacokinetics of drugs in overdose is complicated. Deliberate self-poisoning is generally impulsive and associated with poor accuracy in dose history. In addition, early blood samples are rarely collected to characterize the whole plasma-concentration time profile and the effect of decontamination on the pharmacokinetics is uncertain. The aim of this study was to explore a fully Bayesian methodology for population pharmacokinetic analysis of data that arose from deliberate self-poisoning with citalopram. Prior information on the pharmacokinetic parameters was elicited from 14 published studies on citalopram when taken in therapeutic doses. The data set included concentration-time data from 53 patients studied after 63 citalopram overdose events (dose range: 20-1700 mg). Activated charcoal was administered between 0.5 and 4 h after 17 overdose events. The clinical investigator graded the veracity of the patients' dosing history on a 5-point ordinal scale. Inclusion of informative priors stabilised the pharmacokinetic model and the population mean values could be estimated well. There were no indications of non-linear clearance after excessive doses. The final model included an estimated uncertainty of the dose amount which in a simulation study was shown to not affect the model's ability to characterise the effects of activated charcoal. The effect of activated charcoal on clearance and bioavailability was pronounced and resulted in a 72% increase and 22% decrease, respectively. These findings suggest charcoal administration is potentially beneficial after citalopram overdose. The methodology explored seems promising for exploring the dose-exposure relationship in the toxicological settings.
Resumo:
Australian heroin markets have recently undergone dramatic change, sparking debate about the nature of such markets. This study aimed to determine the onset, peak and decline of the heroin shortage in New South Wales (NSW), using the most appropriate available methods to detect market level changes. The parameters of the heroin shortage were determined by reviewing: reports of heroin users about availability and price (derived from the existing literature and the Illicit Drug Reporting System); qualitative interviews with injecting drug users, and health and law enforcement professionals working in the illicit drug field; and examining data on heroin seizures over the past decade. There was a marked reduction in heroin supply in NSW in early 2001. An increase in the price of heroin occurred in 2001, whereas it had decreased steadily since 1996. A reduction in purity also occurred, as reported by drug users and heroin seizures. The peak period of the shortage appears to have been January to April 2001. The market appears to have stabilised since that time, although it has not returned to pre- 2001 levels: heroin prices have decreased in NSW for street grams, but not to former levels, and the price of `caps' (street deals) remain elevated. Heroin purity in NSW has remained low, with perhaps a 10% increase above the lowest recorded levels. These data support the notion that the heroin market in NSW underwent significant changes, which appear to have involved a lasting shift in the nature of the market.
Resumo:
The aim of this in vitro study was to evaluate the fracture load and marginal accuracy of crowns made from a shrinkage-free ZrSiO4 ceramic cemented with glass-ionomer or composite cement after chewing simulation. Thirty-two human mandibular molars were randomly divided into two groups. All teeth were prepared for and restored with shrinkage-free ZrSiO4 ceramic crowns (Everest HPC (R), KaVo). The crowns of group A (N = 16) were luted to the teeth using KetacCem (R) and group B (N = 16) were adhesively cemented using Panavia (R) 21EX. Measurements of the marginal accuracy before and after cementation were made using replicas and an image analysis system. All specimens were exposed to 1.2 million cycles of thermo-mechanical fatigue in a chewing simulator. Surviving specimens were subsequently loaded until fracture in a static testing device. Fracture loads (N) were recorded. All specimens survived chewing simulation. The mean fracture loads (+/- s.d.) were Group A, 1622 N (+/- 433); group B, 1957 N (+/- 806). There was no significant difference between the two groups (P > 0.05). The marginal gap values before cementation were (mean +/- s.d.): Group A, 32.7 mu m (+/- 6.8); group B, 33.0 mu m (+/- 6.7).The mean marginal gap values after cementation were (+/- s.d.): Group A, 44.6 mu m (+/- 6.7); group B, 46.6 mu m (+/- 7.7). The marginal openings were significantly higher after cementation for both groups (P < 0.05). All test groups demonstrated fracture load and marginal accuracy values within the range of clinical acceptability.
Resumo:
This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.