999 resultados para Spin tunneling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

University spin-out (USO) companies play an increasingly important role in generating value from radical, generic technologies, but this translation requires significant resources from other players to reach the market. Seven case studies illuminate how relationships with each type of partner can be leveraged to help the firm create value. We find that most firms in the sample are aware of the importance of corporate partners and actively seek to cultivate these relationships, but may not be taking full advantage of the resources available through nonparent academic institutions and other USOs with similar or complementary technologies. © 2013 The Authors. R&D Management © 2013 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the Fermi-Dirac statistics of electrons the temporal correlations of tunneling events in a double barrier setup are typically negative. Here, we investigate the shot noise behavior of a system of two capacitively coupled quantum dot states by means of a Master equation model. In an asymmetric setup positive correlations in the tunneling current can arise due to the bunching of tunneling events. The underlying mechanism will be discussed in detail in terms of the current-current correlation function and the frequency-dependent Fano factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunneling through two vertically coupled quantum dots is studied by means of a Pauli master equation model. The observation of double peaks in the current-voltage characteristic in a recent experiment is analyzed in terms of the tunnel coupling between the quantum dots and the coupling to the contacts. Different regimes for the emitter chemical potential indicating different peak scenarios in the tunneling current are discussed in detail. We show by comparison with a density matrix approach that the interplay of coherent and incoherent effects in the stationary current can be fully described by this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rashba spin splitting is a two-dimensional (2D) relativistic effect closely related to spintronics. However, so far there is no pristine 2D material to exhibit enough Rashba splitting for the fabrication of ultrathin spintronic devices, such as spin field effect transistors (SFET). On the basis of first-principles calculations, we predict that the stable 2D LaOBiS2 with only 1 nm of thickness can produce remarkable Rashba spin splitting with a magnitude of 100 meV. Because the medium La2O2 layer produces a strong polar field and acts as a blocking barrier, two counter-helical Rashba spin polarizations are localized at different BiS 2 layers. The Rashba parameter can be effectively tuned by the intrinsic strain, while the bandgap and the helical direction of spin states sensitively depends on the external electric field. We propose an advanced Datta-Das SFET model that consists of dual gates and 2D LaOBiS2 channels by selecting different Rashba states to achieve the on-off switch via electric fields. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually, firms that produce innovative global products are discussed within the context of developed countries. New ventures in developing countries are typically viewed as low-cost product providers that generate technologically similar products to those produced by developed economies. However, this paper argues that some Chinese university spin-outs (USOs), although rare, have adopted a novel 'catch-up' strategy to build global products on the basis of indigenous platform technologies. This paper attempts to develop a conceptual framework to address the question: how do these specific Chinese USOs develop their innovation capabilities to build global products? In order to explore the idiosyncrasies of the specific USOs, this paper uses the multiple case studies method. The primary data sources are accessed through semi-structured interviews. In addition, archival data and other materials are used as secondary sources. The study analyses the configuration of capabilities that are needed for idiosyncratic growth, and maps them to the globalisation processes. This paper provides a strategic 'roadmap' as an explanatory guide to entrepreneurs, policy makers and investors to better understand the phenomena. © 2014 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically quantum transport through graphene nanorings in the presence of a perpendicular magnetic field. Our theoretical results demonstrate that the graphene nanorings behave like a resonant tunneling device, contrary to the Aharonov-Bohm oscillations found in conventional semiconductor rings. The resonant tunneling can be tuned by the Fermi energy, the size of the central part of the graphene nanorings and the external magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spin-injection/-detection device has been fabricated based on the multiple quantum well light emitting diode (LED) structure. It is found that only a broad electroluminescence (EL) peak of a full width at half maximum of 8.6 nm appears at the wavelength of 801 nm in EL spectra with a circular luminescence polarization degree of 18%, despite PL spectra always show three well resolved peaks. The kinetic energy gained by injected electrons and holes in their drift along opposite directions broadens the EL peak, and makes three EL peaks converge together. The same process also destroys the injected spin polarization of electrons mainly dominated by the Bir-Aronov-Pikus spin relaxing mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.