974 resultados para Spent catalyst
Resumo:
The article reconstructs the largely forgotten role of key Brazilian intellectuals in the Latins-versus-Anglo-Saxons debates that developed around 1898, emphasizing the embeddedness of their thinking in the transnational crossings of men and ideas within South America. It thus challenges the common depiction of late-nineteenth-century Latin Americanism as a purely Spanish American phenomenon and of the United States as its major catalyst, allowing a more nuanced understanding of this movement' s nature.
Resumo:
This paper presents a study carried out in order to evaluate the students' perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author's believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.
Resumo:
This paper describes preliminary work done towards the development of new metallic heterogeneous catalysts to be used in the transesterification reaction of triglycerides, which is of considerable interest in the production of biodiesel. Biodiesel, is a mixture of mono-alkyl esters of fatty acids, and is currently manufactured by transesterification of triglycerides with methanol using NaOH or KOH as liquid base catalyst. Catalysts as such are corrosive to the equipment, and as these catalysts are in liquid phase must be neutralized after the completion of the reaction, typically using HCl, thus producing salt streams. Moreover, due to the presence of free fatty acids it reacts to form soaps as unwanted by-products, hence requiring more expensive separation processes. Therefore, there is a great need on the development of industrial processes for biodiesel production using solid acid catalysts. The key benefit of using solid acid catalysts is that no polluting by-products are formed and the catalysts do not have to be removed since they do not mix with the biodiesel product.
Resumo:
This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work resulted in the selection of CaO and CaO modified with Li catalysts, which showed very good catalytic performances with high activity and stability. In fact FAME yields higher than 92% were observed in two consecutive reaction batches without expensive intermediate reactivation procedures. Therefore, those catalysts appear to be suitable for biodiesel production.
Resumo:
Os sistemas de armas da Força Aérea Portuguesa (FAP) têm por missão a defesa militar de Portugal, através de operações aéreas e da defesa do espaço aéreo nacional, sendo o F-16 o principal avião de ataque em uso nesta organização. Neste sentido, e tendo em conta o actual contexto económico mundial, as organizações devem rentabilizar todos os recursos disponíveis, custos associados e optimizar processos de trabalho. Tendo por base os pressupostos anteriores, o presente estudo pretende analisar a implementação de lean na FAP, uma vez que esta filosofia assenta na eliminação de desperdícios com vista a uma melhoria da qualidade e diminuição de tempos e custos. Posto isto, a análise deste trabalho vai recair sobre a área de manutenção do F-16, em concreto na Inspeção de Fase (IF), um tipo de manutenção que esta aeronave realiza a cada trezentas horas de voo. O estudo de caso vai incidir em dois momentos da IF: o primeiro ponto relaciona-se com o processamento da recolha de dados para a reunião preliminar onde são definidas, para as áreas de trabalho executantes, as ações de manutenção a realizar com a paragem da aeronave. Deste modo, pretende-se averiguar as causas inerentes aos atrasos verificados para a realização desta reunião. O segundo ponto em observação compreende a informação obtida através da aplicação informática SIAGFA, em uso na FAP, para o processamento de dados de manutenção das quatro aeronaves que inauguraram a IF com a filosofia lean. Esta análise permitiu perceber o número de horas de trabalho dispendidas (em média pelas quatro aeronaves) por cada uma das cartas de trabalho, verificando-se que as cartas adicionais comportam mais horas; foi possível compreender quais as áreas de trabalho consideradas críticas; foram identificados os dias de trabalho realizado e tempos de paragem sem qualquer tipo de intervenção. Foi ainda avaliado, por aeronave, o número de horas de trabalho realizadas na IF e quais os constrangimentos que se verificaram nas aeronaves, que não realizaram a IF no tempo definido para tal.
Resumo:
Formaldehyde (CH2O), the most simple and reactive aldehyde, is a colorless, reactive and readily polymerizing gas at room temperature (National Toxicology Program [NTP]. It has a pungent suffocating odor that is recognized by most human subjects at concentrations below 1 ppm. Aleksandr Butlerov synthesized the chemical in 1859, but it was August Wilhelm von Hofmann who identified it as the product formed from passing methanol and air over a heated platinum spiral in 1867. This method is still the basis for the industrial production of formaldehyde today, in which methanol is oxidized using a metal catalyst. By the early 20th century, with the explosion of knowledge in chemistry and physics, coupled with demands for more innovative synthetic products, the scene was set for the birth of a new material–plastics. According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Formaldehyde annual production rises up to 21 million tons worldwide and it has increased in China with 7.5 million tons produced in 2007. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Commercially, formaldehyde is manufactured as an aqueous solution called formalin, usually containing 37% by weight of dissolved formaldehyde. This chemical is present in all regions of the atmosphere arising from the oxidation of biogenic and anthropogenic hydrocarbons. Formaldehyde concentration levels range typically from 2 to 45 ppbV (parts per billion in a given volume) in urban settings that are mainly governed by primary emissions and secondary formation.
Resumo:
With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.
Resumo:
The catalytic properties of Pt based cordierite foam catalysts have been evaluated in catalytic combustion of toluene (800 ppm in air). The catalysts contain identical Pt content (0.1%) which was introduced by three different ways: Pt ion exchange on MFI zeolite and then coating on the foam; Pt ion exchange after zeolite coating and finally Pt directly wet impregnated on the cordierite foam. The catalytic behaviour of Pt foam based catalysts was compared with that of PtMFI zeolite under powder form. Pt exchanged MFI supported on the cordierite foams present an improvement of activity for toluene combustion of about 50 degrees C on the light off temperature (T-50%). The enhanced performance of the structured catalysts is due not only to the open structure of foams and homogeneous thin layers catalyst deposited on their cell walls, but also to the fact that the size and location of Pt particles present in MFI zeolite are changed during the dipping step. Indeed, as prepared Pt samples and those used in the preparation of the slurry were observed by transmission electron microscopy revealing that the chemical interaction of PtMFI zeolite with the binder and detergent, both present in the slurry, leads to an increase of Pt particles size which were found to migrate from internal pores to the external surface of zeolite crystallites thereby increasing catalytic activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.
Resumo:
Novel [Ru(eta(6)-p-cymene)(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O complexes (L = bis-, tris-, or tetrakis-pyrazolylborate; X = Cl, N-3, PF6, or CF3SO3) are prepared by treatment of [Ru(eta(6)-p-cymene)Cl-2](2) with poly-(pyrazolyl)borate derivatives [M(L)] (L in general; in detail L = Ph(2)Bp = diphenylbis-(pyrazol-1-yl)borate; L = Tp = hydrotris(pyrazol-1-yl)borate; L = pzTp = tetrakis(pyrazol-1-yl)borate; L = Tp(4Bo) = hydrotris(indazol-1-yl)borate, L = T-p4Bo,T-5Me = (5-methylindazol-1-yl)borate; L = Tp(Bn,4Ph) = hydrotris(3-benzyl-4-phenylpyrazol-1-yl)borate; M = Na, K, or TI) and characterized by analytical and spectral data (IR, ESIMS, H-1 and C-13 NMR). The structures of [Ru(eta(6)-p-cymene)(Ph(2)Bp)Cl] (1) and [Ru(eta(6)-p-cymene)(Tp)Cl] (3) have been established by single-crystal X-ray diffraction analysis. Electrochemical studies allowed comparing the electron-donor characters of Tp and related ligands and estimating the corresponding values of the Lever E-L ligand parameter. The complexes [Ru(eta(6)-p-cymene)-(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O act as catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehyde and nitroethane to the corresponding beta-nitroalkanol (up to 82% yield, at room temperature) with diastereoselectivity toward the formation of the threo isomer.
Resumo:
Novel [Ru(L)(Tpms)]Cl and [Ru(L)(Tpms(Ph))]Cl complexes (L = p-cymene, benzene, or hexamethylbenzene, Tpms = tris(pyrazolyl)-methanesulfonate, Tpms(Ph) = tris(3-phenylpyrazoly)methanesulfonate) have been prepared by reaction of [Ru(L)(mu-Cl)(2)](2) with Li[Tpms] and Li[Tpms(Ph)], respectively. [Ru(p-cymene)(Tpms)]BF4 has been synthesized through a metathetic reaction of [Ru(p-cymene)(Tpms)]Cl with AgBF4. [RuCl(cod)(Tpms)] (cod = 1,5-cyclooctadiene) and [RuCl(cod)(Tpms(Ph))] are also reported, being obtained by reaction of [RuCl2(cod)(MeCN)(2)] with Li[Tpms] and Li[Tpms(Ph)], respectively. The structures of the complexes and the coordination modes of the ligands have been established by IR, NMR, and single-crystal X-ray diffraction (for [RuL(Tpms)]X (L = p-cymene or HMB, X = Cl; L = p-cymene, X = BF4)) studies. Electrochemical studies showed that each complex undergoes a single-electron R-II -> R-III oxidation at a potential measured by cyclic voltammetry, allowing to compare the electron-donor characters of the tris(pyrazolyl)methanesulfonate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for Tmps(Ph), HMB, and cod.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 degrees C and 700 degrees C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60 -65 degrees C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.