956 resultados para Spectral Shift Function
Resumo:
The specific aspects of cognition contributing to balance and gait have not been clarified in people with Parkinson’s disease (PD). Twenty PD participants and twenty age- and gender-matched healthy controls were assessed on cognition and clinical mobility tests. General cognition was assessed with the Mini Mental State Exam and the Addenbrooke’s Cognitive Exam. Executive function was evaluated using the Trail Making Tests (TMT-A and TMT-B) and a computerized cognitive battery which included a series of choice reaction time (CRT) tests. Clinical gait and balance measures included the Tinetti, Timed Up & Go, Berg Balance and Functional Reach tests. PD participants performed significantly worse than the controls on the tests of cognitive and executive function, balance and gait. PD participants took longer on Trail Making Tests, CRT-Location and CRT-Colour (inhibition response). Furthermore, executive function, particularly longer times on CRT-Distracter and greater errors on the TMT-B were associated with worse balance and gait performance in the PD group. Measures of general cognition were not associated with balance and gait measures in either group. For PD participants, attention and executive function were impaired. Components of executive function, particularly those involving inhibition response and distracters, were associated with poorer balance and gait performance in PD.
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
On delivery of nitric oxide (NO) to protein samples (e.g., cytochrome c'), for spectroscopic experiments it is important to avoid exposure to oxygen and to remove contaminants from the NO gas. We describe a number of techniques for steady-state UV/Vis spectrophotometry and pre-steady-state stopped-flow spectrophotometry analysis of cytochrome c'.
Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging
Resumo:
Cryo-electron tomography together with averaging of sub-tomograms containing identical particles can reveal the structure of proteins or protein complexes in their native environment. The resolution of this technique is limited by the contrast transfer function (CTF) of the microscope. The CTF is not routinely corrected in cryo-electron tomography because of difficulties including CTF detection, due to the low signal to noise ratio, and CTF correction, since images are characterised by a spatially variant CTF. Here we simulate the effects of the CTF on the resolution of the final reconstruction, before and after CTF correction, and consider the effect of errors and approximations in defocus determination. We show that errors in defocus determination are well tolerated when correcting a series of tomograms collected at a range of defocus values. We apply methods for determining the CTF parameters in low signal to noise images of tilted specimens, for monitoring defocus changes using observed magnification changes, and for correcting the CTF prior to reconstruction. Using bacteriophage PRDI as a test sample, we demonstrate that this approach gives an improvement in the structure obtained by sub-tomogram averaging from cryo-electron tomograms.
Resumo:
Exotic grasses have been introduced in countries worldwide for pasture improvement, soil stabilisation and ornamental purposes. Some of these introductions have proven successful, but many have not (Cook & Dias 2006). In Australia, the Commonwealth Plant Introduction Scheme was initiated in 1929, and over-time introduced more than 5000 species of grasses, legumes and other forage and browse plants (Cook & Dias 2006). Lonsdale (1994) suggested that, in tropical Australia, 13% of introductions have become a problem, with only 5% being considered useful for agriculture. Low (1997) suggested that 5 out of 18 of Australia's worst tropical environmental weeds were intentionally introduced as pasture grasses. The spread and dominance of invasive grass species that degrade the quality of pastures for production can impact significantly on the livelihoods of small proprietors. Although Livestock grazing contributes only a small percentage to the world's GDP (1.5%), maintaining the long-term stability of this industry is crucial because of the high social and environmental consequence of a collapse. One billion of the world's poor are dependent on livestock grazing for food and income with this industry occupying more than 25% of the world's land base (Steinfeld et al. 2006). The ling-term sustainability of livestock grazing is also crucial for the environment. A recent FAO report attributed livestock production as a major cause of five of the most serious environmental problems: global warming, land degredation, air and water pollution, and the loss of biodiversity (Steinfeld et al. 2006). For these reasons, finding more effective approaches that guide the sustainable management of pastures is urgently needed. In Australia more than 55% of land use is for livestock grazing by sheelp and/or cattle. This land use dominate in the semi-arid and arid regions where rainfall and soil conditions are marginal for production (Commonwealth of Australia 2004). Although the level of agriculture production by conglomerates is increasing, the majority of livestock grazing within Australia remains family owned and operated (Commonwealth of Australia 2004). The sustainability of production from a grazed pasture is dependent on its botanical composition (Kemp & Dowling 1991, Kemp et al. 1996). In a grazed pasture, the dominance of an invasive grass species can impact on the functional integrity of the ecosystem, including production and nutrient cycling; wwhich will in turn, affect the income of proprietors and the ability of the system to recover from disturbance and environmental change. In Australia, $0.3 billion is spent on weed control in livestock production, but despite this substantial investment $1.9 billion is still lost in yield as a result of weeds (Sinden et al. 2004). In this paper, we adaprt a framework proposed for the restoration of degraded rainforest communities (Lamb & Gilmour 2003, Lamb et al. 2005) to compare and contrast options for recovering function integrity (i.e. a diverse set of desirable plant species that maintain key ecological processes necessary for sustainable production and nutrient cycling) within pasture communities dominated by an invasive grass species. To do this, we uase a case-study of the invasion of Eragrostis curvula (Africal lovegrss; hereafter, Lovegrass), a serious concern in Australian agricultural communities (Parsons and Cuthbertson 1992). The spread and dominance of Lovegrass is a problem because its low palatability, low nutritional content and competitiveness affect the livelihood of graziers by reducing the diversity of other plant species. We conclude by suggesting modifications to this framework for pasture ecosystems to help increase the effiency of strategies to protect functional integrity and balance social/economic and biodiversity values.
Resumo:
Large scale exome sequencing studies have revealed regions of the genome, which contribute to the castrate resistant prostate cancer (CRPC) phenotype. [1],[2],[3] Such studies have identified mutations in genes, which may have diagnostic/prognostic potential, or which may be targeted therapeutically. Two of these genes include the androgen receptor (AR) and speckle-type POZ protein (SPOP) genes. However, the findings from these exome sequencing studies can only be translated therapeutically once the functional consequences of these mutations have been determined. Here, we highlight the recent study by An et al. [4] which investigated the functional effects of mutations in the SPOP gene that were identified in the aforementioned exome sequencing studies, particularly in the context of SPOP-mediated degradation of the AR.
Resumo:
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Resumo:
Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.