985 resultados para Spatial extent
Resumo:
The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.
Resumo:
Knockout mice lacking alphalb noradrenergic receptors were tested in behavioural experiments to test a possible effect of the absence of this receptor in reaction to novelty and spatial orientation. Reaction to novelty was tested in two experiments. In the first one the mice' latency to exit the first part of a two compartment set-up was measured. The knockout mice were faster to emerge then their littermate controls. Then they were tested in an open-field, in which new objects were added at the second trial. In the open-field without objects (first trial), the knockout mice showed a greater locomotor activity (path length). Then the same mice showed enhanced exploration of the newly introduced objects, relative to the control. The spatial orientation experiments were done on a homing board and in the water maze. The homing board did not yield a significant difference between the knock-out and the control mice. Both groups showed impaired results when the proximal (olfactory) and distal (visual) cues were disrupted by the rotation of the table. In the water maze however, the alphalb(-/-) mice were unable to solve the task (acquisition and retention), whereas the control mice showed a good acquisition and retention behaviour. The knockout mice' incapacity to learn to reach the submerged platform was not due to an incapacity to swim, as they were as good as their control littermates to reach the platform when it was visible.
Resumo:
Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
ABSTRACT: BACKGROUND: In acute myocardial infarction (AMI), both tissue necrosis and edema are present and both might be implicated in the development of intraventricular dyssynchrony. However, their relative contribution to transient dyssynchrony is not known. Cardiovascular magnetic resonance (CMR) can detect necrosis and edema with high spatial resolution and it can quantify dyssynchrony by tagging techniques. METHODS: Patients with a first AMI underwent percutaneous coronary interventions (PCI) of the infarct-related artery within 24 h of onset of chest pain. Within 5-7 days after the event and at 4 months, CMR was performed. The CMR protocol included the evaluation of intraventricular dyssynchrony by applying a novel 3D-tagging sequence to the left ventricle (LV) yielding the CURE index (circumferential uniformity ratio estimate; 1 = complete synchrony). On T2-weighted images, edema was measured as high-signal (>2 SD above remote tissue) along the LV mid-myocardial circumference on 3 short-axis images (% of circumference corresponding to the area-at-risk). In analogy, on late-gadolinium enhancement (LGE) images, necrosis was quantified manually as percentage of LV mid-myocardial circumference on 3 short-axis images. Necrosis was also quantified on LGE images covering the entire LV (expressed as %LV mass). Finally, salvaged myocardium was calculated as the area-at-risk minus necrosis (expressed as % of LV circumference). RESULTS: After successful PCI (n = 22, 2 female, mean age: 57 ± 12y), peak troponin T was 20 ± 36ug/l and the LV ejection fraction on CMR was 41 ± 8%. Necrosis mass was 30 ± 10% and CURE was 0.91 ± 0.05. Edema was measured as 58 ± 14% of the LV circumference. In the acute phase, the extent of edema correlated with dyssynchrony (r2 = -0.63, p < 0.01), while extent of necrosis showed borderline correlation (r2 = -0.19, p = 0.05). PCI resulted in salvaged myocardium of 27 ± 14%. LV dyssynchrony (=CURE) decreased at 4 months from 0.91 ± 0.05 to 0.94 ± 0.03 (p < 0.004, paired t-test). At 4 months, edema was absent and scar %LV slightly shrunk to 23.7 ± 10.0% (p < 0.002 vs baseline). Regression of LV dyssynchrony during the 4 months follow-up period was predicted by both, the extent of edema and its necrosis component in the acute phase. CONCLUSIONS: In the acute phase of infarction, LV dyssynchrony is closely related to the extent of edema, while necrosis is a poor predictor of acute LV dyssynchrony. Conversely, regression of intraventricular LV dyssynchrony during infarct healing is predicted by the extent of necrosis in the acute phase.
Resumo:
OBJECTIVES: This study sought to establish an accurate and reproducible T(2)-mapping cardiac magnetic resonance (CMR) methodology at 3 T and to evaluate it in healthy volunteers and patients with myocardial infarct. BACKGROUND: Myocardial edema affects the T(2) relaxation time on CMR. Therefore, T(2)-mapping has been established to characterize edema at 1.5 T. A 3 T implementation designed for longitudinal studies and aimed at guiding and monitoring therapy remains to be implemented, thoroughly characterized, and evaluated in vivo. METHODS: A free-breathing navigator-gated radial CMR pulse sequence with an adiabatic T(2) preparation module and an empirical fitting equation for T(2) quantification was optimized using numerical simulations and was validated at 3 T in a phantom study. Its reproducibility for myocardial T(2) quantification was then ascertained in healthy volunteers and improved using an external reference phantom with known T(2). In a small cohort of patients with established myocardial infarction, the local T(2) value and extent of the edematous region were determined and compared with conventional T(2)-weighted CMR and x-ray coronary angiography, where available. RESULTS: The numerical simulations and phantom study demonstrated that the empirical fitting equation is significantly more accurate for T(2) quantification than that for the more conventional exponential decay. The volunteer study consistently demonstrated a reproducibility error as low as 2 ± 1% using the external reference phantom and an average myocardial T(2) of 38.5 ± 4.5 ms. Intraobserver and interobserver variability in the volunteers were -0.04 ± 0.89 ms (p = 0.86) and -0.23 ± 0.91 ms (p = 0.87), respectively. In the infarction patients, the T(2) in edema was 62.4 ± 9.2 ms and was consistent with the x-ray angiographic findings. Simultaneously, the extent of the edematous region by T(2)-mapping correlated well with that from the T(2)-weighted images (r = 0.91). CONCLUSIONS: The new, well-characterized 3 T methodology enables robust and accurate cardiac T(2)-mapping at 3 T with high spatial resolution, while the addition of a reference phantom improves reproducibility. This technique may be well suited for longitudinal studies in patients with suspected or established heart disease.
Resumo:
Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage.
Resumo:
Lutzomyia (Nyssomyia) whitmani s.l.is the main vector of cutaneous leishmaniasis in state of Mato Grosso, but little is known about environmental determinants of its spatial distribution on a regional scale. Entomologic surveys of this sand fly species, conducted between 1996 and 2001 in 41 state municipalities, were used to investigate the relationships between environmental factors and the presence of the species, and to develop a spatial model of habitat suitability. The relationship between averaged CDC light trap indexes and 15 environmental and socio-economic factors were tested by logistic regression (LR) analysis. Spatial layers of deforestation tax and the Brazilian index of gross net production (IGNP) were identified as significant explanatory variables for vector presence in the LR model, and these were then overlaid with habitat maps. The highest habitat suitability in 2001 was obtained for the heavily deforested areas in the Central-North, South, East, and Southwest of Mato Grosso, particularly in municipalities with lower IGNP values.
Parts, places, and perspectives : a theory of spatial relations based an mereotopology and convexity
Resumo:
This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin-based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin-based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.
Resumo:
Praziquantel chemotherapy has been the focus of the Schistosomiasis Control Program in Brazil for the past two decades. Nevertheless, information on the impact of selective chemotherapy against Schistosoma mansoni infection under the conditions confronted by the health teams in endemic municipalities remains scarce. This paper compares the spatial pattern of infection before and after treatment with either a 40 mg/kg or 60 mg/kg dose of praziquantel by determining the intensity of spatial cluster among patients at 180 and 360 days after treatment. The spatial-temporal distribution of egg-positive patients was analysed in a Geographic Information System using the kernel smoothing technique. While all patients became egg-negative after 21 days, 17.9% and 30.9% reverted to an egg-positive condition after 180 and 360 days, respectively. Both the prevalence and intensity of infection after treatment were significantly lower in the 60 mg/kg than in the 40 mg/kg treatment group. The higher intensity of the kernel in the 40 mg/kg group compared to the 60 mg/kg group, at both 180 and 360 days, reflects the higher number of reverted cases in the lower dose group. Auxiliary, preventive measures to control transmission should be integrated with chemotherapy to achieve a more enduring impact.
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.