969 resultados para Soybean seed
Resumo:
The sorghum is a kind of prominence before the cultures used in succession in the Brazil. However, little information concerning the effects of residual activity of herbicides on the crop in this region are known. The objective of this study was to evaluate the residual activity of herbicides used in weed management in soybeans as well as check their effects on grain sorghum grown in succession. For the field experiment, we used a randomized block design with four replications. Eight herbicide treatments were evaluated: imazaquin (0,161 kg ha-1), diclosulam (0,035 kg ha-1), sulfentrazone (0,600 kg ha-1) and flumioxazin (0,05 kg ha-1) in applications made before emergency and chlorimuron-ethyl (0,015 kg ha-1), imazethapyr (0,060 kg ha-1), imazethapyr (0,100 kg ha-1) and fomesafen (0,250 kg ha-1) applied post-emergence soybean (V3 stadium, 18 DAE), and a control without herbicide application. The grain sorghum (cv. AG-1040) was sown after the harvest of soybeans. The residual activity of these herbicides was determined by bioassay, using the same sorghum cultivars evaluated in the field during the period from 0 to 200days after application the treatments. The sorghum crop showed high sensitivity to residual activity of the herbicide sulfentrazone, diclosulam and imazethapyr dose of 0,100 kg ha-1, even when grown after soybean harvest. Furthermore, the residual activity of sulfentrazone exceeded the range of assessment of bioassay, and more than 200 days.
Resumo:
The continuous use of ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is one of the most troublesome weeds found in the soybean production system in Brazil. Recently, a greater beggarticks biotype that is resistant (R) to ALS inhibitors due to Trp574Leu mutation in the ALS gene was identified. Also, the adaptive traits between susceptible (S) and R to ALS inhibitors biotypes of greater beggarticks were compared. Specifically, we aimed to: (1) evaluate and compare the relative growth rates (RGR) between the biotypes; (2) analyze the seed germination characteristics of R and S biotypes under different temperature conditions; and (3) evaluate their competitive ability in a replacement series study. The experiments were conducted at the University of Arkansas, USA, in 2007 and at Universidade Federal do Rio Grande do Sul (Federal University of Rio Grande do Sul), Brazil, in 2008. Plant proportions for replacement series studies were respectively 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 150 plants m-2. There was no difference in RGR between R and S biotypes. The R-biotype germination rate was lower than that of the S biotype. However, at low temperature conditions (15 ºC), the reverse was observed. In general, there is no difference in the competitive ability between R and S greater beggarticks biotypes.
Resumo:
Volunteer canola (Brassica napus) and Sinapis arvensis are well identified weeds of different cropping systems. Quantitative information on regarding seed production by them is limited. Such information is necessary to model dynamics of soil seed banks. The aim of this work was to quantify seed production as a function of the size of those weeds. A wide range of plant size was produced by using a fan seeding system performed at two sowing dates (environments). Plant size varied from 3 to 167 g per plant for canola and from 6 to 104 g per plant for S. arvensis. Seed production ranged from 543 to14,773 seeds per plant for canola, and from 264 to 10,336 seeds per plant for S. arvensis. There was a close relationship between seed production per plant and plant size which was well-described by a power function (y = 130.6x0.94; R² = 0.93 for canola and y = 28x1.27; R² = 0.95 for S. arvensis). There was also strong relationships among the number of pods produced in individual plants and the quantity of seeds produced (g per plant) with the size of the plant. The relationships found in this study can be used in dynamic seed bank models of volunteer canola and S. arvensis.
Resumo:
Decomposing wheat (Triticum aestivum) straw and rhizosphere-infested soil were evaluated for their suppressive activity against horse purslane (Trianthema portulacastrum), a noxious summer weed in Pakistan. Two separate pot studies were carried out. Wheat straw was incorporated at 4, 6 and 8 g kg-1 soil five days before the sowing of horse purslane. Pots without straw incorporation were maintained as control. In a second study, soil was taken from 15 and 30 cm depths from a previously cropped wheat field immediately after its harvest and was used as growing medium. Soil from an intentionally uncropped area of the same field was used as control. Suppressive activity was measured in terms of germination dynamics, seedling growth, and biochemical attributes such as chlorophyll contents, total soluble phenolics, soluble protein and antioxidant enzymes. Germination, seedling growth, chlorophyll contents and soluble protein of horse purslane were all negatively influenced. Higher phenolics and enhanced activities of antioxidant enzymes were noticed in response to wheat residues incorporation and its rhizosphere soil. Both studies established that the phytotoxic influence of wheat straw and wheat-infested rhizosphere soil on horse purslane can further be exploited for horse purslane management as a sustainable approach.
Resumo:
This study aimed at assessing the level of weed infestation indifferent areas that were submitted to different soil management for 16 years. Four management systems were studied: (1) agriculture only under conventional tillage system; (2) agriculture only under no-till system; (3) crop-livestock integrationcrop-livestock integration; (4) livestock only. These areas were sampled at three soil depths (0-5, 5-10 and 10-15 cm), and soil was stored in plastic pots and taken to a greenhouse, where soil moisture and weight were standardized. Soil was kept near 70% moisture field capacity, being revolved every 20 days when all seedling emerged from soil were counted, identified and collected for dry mass assessment. The soil coverage by weeds, number of weed seedlings and dry mass of the weedy community were assessed. A phytoecological analysis was conducted. Weed composition is differentdifferent among management systems after 16 years. Areas with livestock showed much smaller number of weed species in comparison to systems where only grain crops are grown. The presence of livestock affects the potential of germination of soil seed bank. Agriculture systems are similar in terms of weed composition along soil profile, while systems involving livestock show little relation in what regards such sampled depths. Conservationist models of land exploration contribute to reduce severity of weed species occurrence in the long term.
Resumo:
Lactofen is a diphenylether herbicide recommended to control broad-leaved weeds in soybean (Glycine max) fields and its mechanism of action is the inhibition of protoporphyrinogen-IX oxidase (Protox), which acts in the chlorophyll biosynthesis. This inhibition results in an accumulation of protoporphyrin-IX, which leads to the production of reactive oxygen species (ROS) that cause oxidative stress. Consequently, spots, wrinkling and leaf burn may occur, resulting in a transitory crop growth interruption. However, nitric oxide (NO) acts as an antioxidant in direct ROS scavenging. Thus, the aim of this work was to verify, through phytometric and biochemical evaluations, the protective effect of NO in soybean plants treated with the herbicide lactofen. Soybean plants were pre-treated with different levels of sodium nitroprusside (SNP), a NO-donor substance, and then sprayed with 168 g a.i. ha-1 lactofen. Pre-treatment with SNP was beneficial because NO decreased the injury symptoms caused by lactofen in young leaflets and kept low the soluble sugar levels. Nevertheless, NO caused slower plant growth, which indicates that further studies are needed in order to elucidate the action mechanisms of NO in signaling the stress caused by lactofen in soybean crop.
Resumo:
An active ingredients mixture of different action mechanisms is an essential tool to prevent or manage areas with resistant weeds. However, it is important that such a mixture provides adequate selectivity to the crop. The aim of this work was to evaluate glyphosate selectivity to glyphosate-resistant (RR) soybean, and also verify if there is selectivity in mixtures with other active ingredients applied postemergence aimed at new control strategies, which might be used in RR soybean cultivation. The herbicides and respective rates (g ha-1) evaluated were: glyphosate (720, 960, 1,200, and 1,440), and the mixtures of glyphosate (960) with cloransulam-methyl (30.24), fomesafen (125), lactofen (72), chlorimuron-ethyl (12.5), flumiclorac-pentyl (30), bentazon (480), or imazethapyr (80). All treatments were applied in postemergence when the soybean crop was at V2 to V3 stage. Treatments with glyphosate or in mixtures with postemergent herbicides showed visual effects of phytotoxicity when applied to the glyphosate-resistant soybean. Effects such as reduction in plant height, crop closure, number of pods per plant, and hundred grain weight could be observed. However, the effects related to plant development were mostly transient and did not persist during the crop cycle. Among the studied treatments, only the mixture of glyphosate and lactofen was not selective to the crop, promoting negative effects on most characteristics analyzed and consequently reducing grain yield.
Resumo:
Weed control has always been an important issue in agriculture. With the advent of no-till systems, soil erosion was reduced but herbicide use was increased. Organic no-till systems try to adjust reduced erosion to the no use of herbicides. Nevertheless, this adjustment is limited by the cost of mechanical weed control. This cost may be reduced by improved cultural weed control with cover crops mulches. In this paper we report a study on the application of compost manure on an oats winter cover crop, preceding soybean, instead of on the soybean summer crop. Treatments comprised a control without compost manure, and compost manure doses of 4 and 8 Mg ha-1 applied either on oats in winter or soybean in summer, organized in a randomized block design, with five replications. In summer, plots were split into weed-controlled or not controlled subplots. The timing of application and the manure doses did not affect the oats biomass or the soybean performance. However, in summer, without water stress, the application of manure at 8 Mg ha-1 directly on soybean has reduced weed biomass in this crop.
Resumo:
An understanding of seed germination ecology of weeds can assist in predicting their potential distribution and developing effective management strategies. Influence of environmental factors and seed size on germination and seedling emergence of Convolvulus arvensis (field bindweed) was studied in laboratory and greenhouse conditions. Germination occurred over a wide range of constant temperatures, between 15 and 40 ºC, with optimum germination between 20 and 25 ºC. Time to start germination, time to 50% germination and mean germination time increased while germination percentage and germination index decreased with an increase in temperature from 20 ºC, salinity and osmotic stress. However, germination was tolerant to low salt (25 mM) or osmotic stress (0.2 MPa), but as salinity and osmotic stress increased, germination percentage and germination index decreased. Seeds of C. arvensis placed at soil surface showed maximum emergence and decreased as seeding depth increased. Seeds of C. arvensis germinated over a wide range of pH (4 to 9) but optimum germination occurred at pH 6 to 8. Under highly alkaline and acidic pH, time to start germination, time to 50% germination and mean germination time increased while germination percentage and germination index decreased. Increase in field capacity caused decreased time to start germination, time to 50% germination and mean germination time but increased germination percentage and germination index. Bigger seeds had low time to start germination, time to 50% germination and mean germination time but high germination percentage and germination index. Smaller seeds were more sensitive to environmental factors as compared to larger or medium seeds. It can be concluded that except for pH, all environmental factors and seed sizes adversely affect C. arvensis as regards seed germination or emergence and germination or emergence traits, and larger seeds result in improved stand establishment and faster germination than small seeds, regardless of moisture stress or deeper seeding depth.
Resumo:
The appropriate chemical management of cover crops in no-tillage aims to obtain greater benefits with its employment in agricultural systems. The objective of this study was to assess upland rice yield as affected by the previous summer crop, species and desiccation timing of cover crops by glyphosate. Sown cover crops were sown (November 2007), followed by rice in half of the experimental area and soybean in the other half (November 2008). After the harvesting of these crops, the same cover crops were sown again (March 2009) and followed by upland rice in the total area (November 2009). The experiment consisted of the combination of five cover crops (fallow, Panicum maximum, Brachiaria ruziziensis, B. brizantha and Pennisetum glaucum), four desiccation timings (30, 20, 10 and 0 days before rice sowing), and two antecedents of the summer crop (rice or soybean) under no-tillage system (NTS), plus two control treatments at conventional tillage system (CTS). Cover crops significantly affect rice grain yield and its components. There is a significant tendency to highest yield when cover crop desiccation is conducted farther from the rice sowing date (from 2,577.1 kg ha-1 - desiccation at rice sowing to 3,115.30 kg ha-1 - desiccation 30 days before rice sowing). Soybean as an antecedent of summer crop allows better upland rice yield (3,754 kg ha-1) than rice as an antecedent of summer crop (2,635 kg ha-1); fallow/soybean/fallow (4,507 kg ha-1) and millet/soybean/millet (4,765 kg ha-1) rotation at no-tillage system, and incorporated fallow /soybean/ incorporated fallow (4,427 kg ha-1) at conventional tillage system allow the highest rice yield; upland rice yield is similar at no-till (3,194 kg ha-1) and till system (2,878 kg ha-1).
Resumo:
Rhynchosia capitata is becoming an increasing problem in summer crops, such as cotton, soybean, pearl millet and mungbean in many Asian countries. Laboratory and greenhouse studies have been conducted to determine the effects of several environmental factors on seed germination patterns and seedling emergence of R. capitata. We investigated whether the diverse ecological factors such as temperature, light, salinity, moisture stress, pH, and soil depth affected germination and seedling emergence of R. capitata. Germination increased as temperature increased from 25ºC and significantly reduced at 45ºC. Presence or absence of light did not influence germination. Germination of R. capitata was sensitive to increased salt and moisture stress, as well as to seed burial depth. Only 48% of seeds germinated at 150 mM salt concentration compared to 100% in control (distilled water). Similarly, 15% of seeds germinated at an osmotic potential of ‑0.8 MPa compared to 88% at ‑0.2 MPa. The optimum pH for seed germination of R. capitata was 7 (98% germination), but the seeds also germinated at lower level of pH 5 (85%) and at higher level of pH 10 (75%). In seed burial trial, maximum seedling emergence of 93% occurred at 2 cm depth, and seedling did not emerge from a depth of 12 cm. The high germination ability of R. capitata under a wide range of ecological factors suggests that this species is likely to be the one to cause more problems in a near future, if not managed appropriately.
Resumo:
Abutilon theophrasti and Barnyardgrass (Echinochloa crus-galli) are major weeds that affect cropping systems worldwide. Laboratory and greenhouse studies were conducted to determine the effects of temperature, pH, water and salinity stress, and planting depth on seed germination and seedling emergence of Velvetleaf and Barnyardgrass. For Velvetleaf, the base, optimum and ceiling germination temperatures were estimated as 5, 35 and 48 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited by a potential of -0.6 MPa, but it was tolerant to salinity. Salinity stress up to 45 mM had no effect on the germination of Velvetleaf, but germination decreased with increasing salt concentration. Drought and salinity levels for 50% inhibition of maximum germination were -0.3 MPa and 110 mM, respectively. Seed germination of Velvetleaf was tolerant to a wide range of pH levels. For Barnyardgrass, the base, optimum and ceiling germination temperatures were estimated as 5, 38 and 45 ºC, respectively. Seed germination was tolerant to drought stress and completely inhibited by a potential of -1.0 MPa. Salinity stress up to 250 mM had no effect on seed germination. Drought and salinity levels for 50% inhibition of maximum germination were -0.5 MPa and 307 mM, respectively. A high percentage of seed germination was observed at pH=5 and decreased to 61.5% at acidic medium (pH 4) and to 11% at alkaline medium (pH 9). Maximum seedling emergence of Velvetleaf and Barnyardgrass occurred when the seeds were placed on the surface of the soil or at a depth of 1 cm.
Resumo:
Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03). The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.
Resumo:
This study aimed to evaluate the effects of weed interference on soybean cultivars at two sowing times in Urutaí, GO. The treatments were arranged in split-plots, and the sowing times (November 16 and December 16, 2009) were allocated in the plots; the soybean cultivars [BRSGO Amaralina, P98C81 (semi-late cycle) BRSGO Raissa, BRSGO Indiara, P98Y11 (median cycle) and BRSGO 7560, BRSGO Caiapônia, Emgopa 302RR (early cycle)] were allocated in the split-plots; and the coexistence or non coexistence of soybean cultivars with weeds, throughout their cycle, was allocated in the split-plots. Non coexistence was established by manual weeding. The experiment was arranged in randomized blocks with four replications. It was verified that the optimal time for sowing soybeans was the month of November, and that under these conditions, the cultivars had higher competitive ability against weeds. Late sowing affected the cycle, development, and yield of the soybean cultivars; this effect was greater under the influence of the weed community.
Resumo:
The existence of large areas infested with populations of Conyza spp. resistant to glyphosate in Brazil demands appropriate and integrated management strategies. This experiment aimed to identify soybean cultivars with greater competitive ability with horseweed plants and to determine plant characteristics associated with this ability. The experiment was arranged in a randomized complete block design with split plots. Seven soybean cultivars (CD 225 RR, BRS 232, CD 226 RR, NK 7054 RR, BMX Apollo RR, BRS 245 RR and BRS 255 RR) were allocated in the plots, and two interference situations (absence and 13.3 plants of Conyza m-2, transplanted seven days before soybean planting) in the subplots. The average yield loss due to competition with horseweed was 25%. Cultivar CD 226 RR showed no significant grain yield loss due to competition, compared to the control without infestation, but showed the lowest average grain yield. The BRS 232 genotype showed loss of grain yield of only 14%, and presented positive plant height and leaf mass at 20 DAE, as well as dry matter of stems+branches in all evaluations, features related to its higher performance and greater ability to withstand competition with horseweed plants.