955 resultados para Soluble protein
Resumo:
Introduction. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. Methods. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. Results. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. Conclusions. The results of this study demonstrate that rhBMP-2 plus PCL-based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
The current study evaluated the effect of soluble dietary cellulose on growth, survival and digestive enzyme activity in three endemic, Australian freshwater crayfish species (redclaw: Cherax quadricarinatus, marron: C. tenuimanus, yabby: C. destructor). Separate individual feeding trials were conducted for late-stage juveniles from each species in an automated recirculating freshwater, culture system. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch, over a 12 week period. Redclaw fed with RD showed significantly higher (p<0.05) specific growth rates (SGR) compared with animals fed the TD, while SGR of marron and yabby fed the two diets were not significantly different. Expressed cellulase activity levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD (p<0.05). Amylase and protease activity in all three species were significantly higher in the animals fed with RD (p<0.05). These results indicate that test animals of all three species appear to utilize starch more efficiently than soluble dietary cellulose in their diet. The inclusion of 20% soluble cellulose in diets did not appear, however, to have a significant negative effect on growth rates.
Resumo:
Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5%; of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59%; of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.
Resumo:
Objective: Theaflavin (TF) from the black tea can react to human salivary proline-rich proteins (PRPs) to form stains on exposed dental surfaces. Here, we employed a model of protein/pigment film using TF and dephosphorylated bovine b-casein (Db-CN), which has an extended conformation, similar to that of salivary PRPs, on a sensor surface to assess the efficacy of cysteine proteases (CPs) including papain, stem bromelain, and ficin, on removing TF bound to Db-CN and the control TF readsorption on the residual substrate surfaces was also measured. Methods: The protein/pigment complex film was built by using a quartz crystal microbalance with dissipation (QCM-D). The efficacies of CPs were assessed by Boltzman equation model. The surface details were detected by grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles. Results: The efficacy order of CPs on hydrolyzing protein/pigment complex film is ficin > papain > bromelain. The results from grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles demonstrated that TF bound on the Db- CN was effectively removed by the CPs, and the amount of TF readsorption on both the residual film of the Db-CN/TF and the Db-CN was markedly decreased after hydrolysis. Conclusion: This study indicates the potential application of the CPs for tooth stain removal and suggests that these enzymes are worthy of further investigation for use in oral healthcare.
Resumo:
Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.
Resumo:
Nuclear factor kappa-beta (NF-kappaB) is a transcription factor responsible for modulating the expression of many genes involved in cell proliferation, differentiation, apoptosis and metastasis. NF-kappaB interacts with IkappaB inhibitory proteins to regulate gene expression. This study investigated common variants within the genes coding for NF-kappaB and IkappaB, NFKB1 and NFKBIA, for involvement in sporadic breast cancer. Genotypes were determined in a population of breast cancer affected individuals and age-matched controls. Results do not support an involvement of the tested NFKB1 and NFKBIA polymorphisms in susceptibility to sporadic breast cancer, in the tested Caucasian population.
Resumo:
Essential hypertensives display enhanced signal transduction through pertussis toxin-sensitive G proteins. The T allele of a C825T variant in exon 10 of the G protein β3 subunit gene (GNB3) induces formation of a splice variant (Gβ3-s) with enhanced activity. The T allele of GNB3 was shown recently to be associated with hypertension in unselected German patients (frequency=0.31 versus 0.25 in control). To confirm and extend this finding in a different setting, we performed an association study in Australian white hypertensives. This involved an extensively examined cohort of 110 hypertensives, each of whom were the offspring of 2 hypertensive parents, and 189 normotensives whose parents were both normotensive beyond age 50 years. Genotyping was performed by polymerase chain reaction and digestion with BseDI, which either cut (C allele) or did not cut (T allele) the 268-bp polymerase chain reaction product. T allele frequency in the hypertensive group was 0.43 compared with 0.25 in the normotensive group (χ2=22; P=0.00002; odds ratio=2.3; 95% CI=1.7 to 3.3). The T allele tracked with higher pretreatment blood pressure: diastolic=105±7, 109±16, and 128±28 mm Hg (mean±SD) for CC, CT, and 7T, respectively (P=0.001 by 1-way ANOVA). Blood pressures were higher in female hypertensives with a T allele (P=0.006 for systolic and 0.0003 for diastolic by ANOVA) than they were in male hypertensives. In conclusion, the present study of a group with strong family history supports a role for a genetically determined, physiologically active splice variant of the G protein β3 subunit gene in the causation of essential hypertension.
Resumo:
Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.
Resumo:
This thesis represents a step forward in the development of a pre-clinical model investigating a suitable substitute for host bone for use in human spinal fusion. By way of an animal model, it examines the biological performance of a novel bone graft substitute comprised of a combination of a custom-designed biodegradable material and biologics.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods: Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [ 15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (?19%, P<0.05) with a trend towards being greater than INT (?9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect90%CI; 0.590.87) and moderate (0.800.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.421.00) for INT vs. PULSE. Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (?20g) at regular intervals (?3h) throughout the day.
Resumo:
PURPOSE We have previously shown that the aminoacidemia caused by the consumption of a rapidly digested protein after resistance exercise enhances muscle protein synthesis (MPS) more than the amino acid (AA) profile associated with a slowly digested protein. Here, we investigated whether differential feeding patterns of a whey protein mixture commencing before exercise affect postexercise intracellular signaling and MPS. METHODS Twelve resistance-trained males performed leg resistance exercise 45 min after commencing each of three volume-matched nutrition protocols: placebo (PLAC, artificially sweetened water), BOLUS (25 g of whey protein + 5 g of leucine dissolved in artificially sweetened water; 1× 500 mL), or PULSE (15× 33-mL aliquots of BOLUS drink every 15 min). RESULTS The preexercise rise in plasma AA concentration with PULSE was attenuated compared with BOLUS (P < 0.05); this effect was reversed after exercise, with two-fold greater leucine concentrations in PULSE compared with BOLUS (P < 0.05). One-hour postexercise, phosphorylation of p70 S6K and rpS6 was increased above baseline with BOLUS and PULSE, but not PLAC (P < 0.05); furthermore, PULSE > BOLUS (P < 0.05). MPS throughout 5 h of recovery was higher with protein ingestion compared with PLAC (0.037 ± 0.007), with no differences between BOLUS or PULSE (0.085 ± 0.013 vs. 0.095 ± 0.010%•h, respectively, P = 0.56). CONCLUSIONS Manipulation of aminoacidemia before resistance exercise via different patterns of intake of protein altered plasma AA profiles and postexercise intracellular signaling. However, there was no difference in the enhancement of the muscle protein synthetic response after exercise. Protein sources producing a slow AA release, when consumed before resistance exercise in sufficient amounts, are as effective as rapidly digested proteins in promoting postexercise MPS.
Resumo:
Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol 112: 1805-1813, 2012. First published March 1, 2012; doi:10.1152/japplphysiol.00170.2012.- We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of L-[ring-13C6]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise (P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1-5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTORSer2448 was elevated to a greater extent in men than women acutely after exercise (P = 0.003), whereas increased phosphorylation of p70S6K1Thr389 was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women (P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery (P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exerciseinduced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.