898 resultados para Solid state compounds
Resumo:
Hydrogenated bulk Zn1-xCoxO samples were synthesized via standard solid-state reaction route with Co molar concentrations up to 15 at.%. Magnetic characterization demonstrates a room temperature ferromagnetic behavior associated to a paramagnetic Curie-Weiss component. Detailed microstructural analysis was carried out to exclude the presence of extrinsic sources of ferromagnetism. The magnetization increases linearly as a function of Co concentration. Hall measurements reveal an insulating character for the whole set of samples. In this context, the defect mediated magnetic coupling between the Co atoms under the scope of the bound magnetic polarons model is used to interpret the observed room temperature ferromagnetism. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.
Resumo:
The coordination compounds [Ni(μ-mal)(apy)2(H 2O)]·2.8H2O (1), [Mn(μ-mal)(H2O) 2] (2), (apyH)2[Cu(μ-mal)2] (3) and (apyH)2[Co(mal)2(H2O)2] (4) (mal = malonate, apy = p-aminopyridine) have been synthesized and characterized by elemental analysis, vibrational spectroscopy, single crystal X-ray diffraction and magnetometry. With exception of 4, the malonate group acts as bridging ligand leading to the formation of one-dimensional polymeric chains. In compound 1 it was observed the coordination of the p-aminopyridine in the axial positions of the distorted octahedral coordination sphere. The solid-state structure exhibits a high complex 3D network formed by several supramolecular interactions. Magnetic properties were determined for all members of the series and indicate that the materials behave are normal paramagnets, except the Mn polymer 2 which exhibits an antiferromagnetic ground state. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Solid-state heavier lanthanides fumarates compounds have been synthesized, and the compounds were characterized by employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), TG coupled to FTIR, elemental analysis, and complexometry. On heating, the dehydration occurs in a single and two consecutive steps and the thermal decomposition of the anhydrous compounds occurs in consecutive and/or overlapping steps, with formation of the respective oxides: Tb4O7 and Ln2O3 (Ln=Dy to Lu). The results also led to information about composition, thermal behavior, and the type of coordination of the isolated compounds. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.
Resumo:
This paper reports on the structural characterization of Pb 1-xLaxZr0.40Ti0.60O3 (PLZT) ferroelectric ceramic compositions prepared by the conventional solid state reaction method. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to probe the local structure of PLZT samples that exhibits a normal and relaxor ferroelectric behavior. From the Zr K-edge and Pb LIII-edge EXAFS spectra, a considerable dissymmetry of Zr and Pb sites was observed in all samples, including those showing a long-range order cubic symmetry and a relaxor behavior. The Raman spectroscopy results confirmed the existence of a local disorder in all PLZT samples through the observation of Raman active vibrational modes. The variation in the intensity of the E(TO 3) mode in the PLZT relaxor samples indicates that the process of correlation between nanodomains stabilizes at temperatures lower than T m. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)