993 resultados para Snake venom toxins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tityus serrulatus is the most venomous scorpion in Brazil. Little is known about the effect of maternal exposure to the venom on fetal development. We investigated the effect of low to moderate doses of the venom (0.3 or 1.0 mg/kg s.c. on either day 5 or day 10 of gestation) on pregnant rats and on their offspring. For dams, we observed their body weight gain and reproductive parameters. For the offspring, we observed their body weight and weight of internal organs and the number of live and dead fetuses, and we investigated whether the venom caused external, visceral, skeletal or histopathological alterations in the offspring. The offspring were examined on gestational day 21. Injection of the venom on gestational day 5 did not change the reproductive parameters of the dams, their weight or fetuses` weight. Rats that received the high dose of the venom (1.0 mg/kg) on gestational day 10 had heavier placentas and heavier fetuses with heavier lungs. Injections on day 10 of gestation did not alter the reproductive parameters of the dams nor their weight gain at either dose. The venom did not cause malformations of the fetal skeleton or viscera and did not delay fetal development with either dose. In conclusion, subcutaneous administration of 0.3 or 1.0 mg/kg T. serrulatus venom to pregnant Wistar rats at either day 5 or day 10 of gestation did not cause maternal or clear fetal toxicity. Subtle increases in placental weight and fetal body and lung weights observed following treatment with 1.0 mg/kg on day 10 of gestation were not associated with histopathological findings. Whether these observations represent a reaction to treatment and, if so, the underlying mechanisms and their toxicological impact remain to be examined further in future studies. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new cloud-point extraction and preconcentration method, using a cationic, surfactant, Aliquat-336 (tricaprylyl-methy;ammonium chloride), his-been developed for the determination of cyanobacterial toxins, microcystins, in natural waters. Sodium sulfate was used to induce phase separation at 25 degreesC. The phase behavior of Aliquat-336 with respect to concentration of Na2SO4 was studied. The cloud-point system revealed a very high phase volume ratio compared to other established systems of nonionic, anionic, and cationic surfactants: At pH 6-7, it showed an outstanding selectivity in ahalyte extraction for anionic species. Only MC-LR and MC-YR, which are known to be predominantly anionic, were extracted (with averaged recoveries of 113.9 +/- 9% and 87.1 +/- 7%, respectively). MC-RR, which is likely to be amphoteric at the above pH range, was. not cle tectable in.the extract. Coupled to HPLC/UV separation and detection, the cloud-point extraction method (with 2.5 mM Aliquat-336 and 75 mM Na2SO4 at 25 degreesC) offered detection limits of 150 +/- 7 and 470 +/- 72 pg/mL for MC-LR and MC-YR, respectively, in 25 mL of deionized water. Repeatability of the method was 7.6% for MC-LR and 7.3% for MC-YR: The cloud-point extraction process can be. completed within 10-15 min with no cleanup steps required. Applicability of the new method to the determination of microcystins in real samples was demonstrated using natural surface waters, collected from a local river and a local duck pond spiked with realistic. concentrations of microcystins. Effects of salinity and organic matter (TOC) content in the water sample on the extraction efficiency were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two peptides, textilinins 1 and 2, isolated from the venom of the Australian common brown snake, Pseudonaja textilis textilis, are effective in preventing blood loss. To further investigate the potential of textilinins as anti-haemorrhagic agents, we cloned cDNAs encoding these proteins. The isolated full-length cDNA (430 bp in size) was shown to code for a 59 amino acid protein, corresponding in size to the native peptide, plus an additional 24 amino acid propeptide. Six such cDNAs were identified, differing in nucleotide sequence in the coding region but with an identical propeptide. All six sequences predicted peptides containing six conserved cysteines common to Kunitz-type serine protease inhibitors. When expressed as glutathione S-transferase (GST) fusion proteins and released by cleavage with thrombin, only those peptides corresponding to textilinin 1 and 2 were active in inhibiting plasmin with K-i values similar to those of their native counterparts and in binding to plasmin less tightly than aprotinin by two orders of magnitude. Similarly, in the mouse tail vein blood loss model only recombinant textilinin 1 and 2 were effective in reducing blood loss. These recombinant textilinins have potential as therapeutic agents for reducing blood loss in humans, obviating the need for reliance on aprotinin, a bovine product with possible risk of transmissible disease, and compromising the fibrinolytic system in a less irreversible manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional structure of chemically synthesized CnErg1 (Ergtoxin), which specifically blocks HERG (human ether-a-go-go-related gene) K+ channels, was determined by nuclear magnetic resonance spectroscopy. CnErg1 consists of a triple-stranded beta-sheet and an a-helix, as is typical of K+ channel scorpion toxins. The peptide structure differs from the canonical structures in that the first beta-strand is shorter and is nearer to the second beta-strand rather than to the third beta-strand on the C-terminus. There is also a large hydrophobic patch on the surface of the toxin, surrounding a central lysine residue, Lys13. We postulate that this hydrophobic patch is likely to form part of the binding surface of the toxin. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and