989 resultados para Shape optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumented microindentation (IM) on two Ni-Ti shape memory alloys (SMAs), where one is austenitic and the other is martensitic at room temperature, were conducted from 40 to 150 degrees C. Results show that the depth and work recovery ratios, eta(d) and eta(w) respectively, are complementary to each other. While eta(d) decreases gradually with temperature for austenite, it drops markedly for the martensite in the martensite-to-austenite transformation regime. These results affirm the utility of IM for characterizing SMAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the evolution of microstructure and texture during hot rolling of hafnium containing NiTi based shape memory alloy Ni49.4Ti38.6Hf12. The formation of the R-phase has been associated with the precipitation of (Ti,Hf)(2)Ni phase. The crystallographic texture of the parent phase B2 as well as the product phases R and B19' have been determined. It has been found that the variant selection during the B2 -> R phase transformation is quite strong compared to the case of the B2 -> B19' transformation. During deformation, the texture of the austenite phase evolves with strong Goss and Bs components. After transformation to martensitic structure, it gives rise to a 011]parallel to RD fiber. Microstructure and texture studies reveal the occurrence of partial dynamic recrystallization during hot rolling. Large strain heterogeneities that occur surrounding (Ti,Hf)(2)Ni precipitates are relieved through extended dynamic recovery instead of particle stimulated nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the possibility of accelerated identification of potential compositions for high-temperature shape memory alloys (SMAs) through a combinatorial material synthesis and analysis approach, wherein we employ the combination of diffusion couple and indentation techniques. The former was utilized to generate smooth and compositionally graded inter-diffusion zones (IDZs) in the Ni-Ti-Pd ternary alloy system of varying IDZ thickness, depending on the annealing time at high temperature. The IDZs thus produced were then impressed with an indenter with a spherical tip so as to inscribe a predetermined indentation strain. Subsequent annealing of the indented samples at various elevated temperatures, T-a, ranging between 150 and 550 degrees C allows for partial to full relaxation of the strain imposed due to the shape memory effect. If T-a is above the austenite finish temperature, A(f), the relaxation will be complete. By measuring the depth recovery, which serves as a proxy for the shape recovery characteristic of the SMA, a three-dimensional map in the recovery temperature composition space is constructed. A comparison of the published Af data for different compositions with the Ta data shows good agreement when the depth recovery is between 70% and 80%, indicating that the methodology proposed in this paper can be utilized for the identification of promising compositions. Advantages and further possibilities of this methodology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiobjective fuzzy methodology is applied to a case study of Khadakwasla complex irrigation project located near Pune city of Maharashtra State, India. Three objectives, namely, maximization of net benefits, crop production and labour employment are considered. Effect of reuse of wastewater on the planning scenario is also studied. Three membership functions, namely, nonlinear, hyperbolic and exponential are analyzed for multiobjective fuzzy optimization. In the present study, objective functions are considered as fuzzy in nature whereas inflows are considered as dependable. It is concluded that exponential and hyperbolic membership functions provided similar cropping pattern for most of the situations whereas nonlinear membership functions provided different cropping pattern. However, in all the three cases, irrigation intensities are more than the existing irrigation intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hafnium dioxide (HfO2) films, deposited using electron beam evaporation, are optimized for high performance back-gated graphene transistors. Bilayer graphene is identified on HfO2/Si substrate using optical microscope and subsequently confirmed with Raman spectroscopy. Back-gated graphene transistor, with 32 nm thick HfO2 gate dielectric, has been fabricated with very high transconductance value of 60 mu S. From the hysteresis of the current-voltage characteristics, we estimate the trap density in HfO2 to be in the mid 10(11)/cm(2) range, comparable to SiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a unified taxonomy of shape features. Such taxonomy is required to construct ontologies to address heterogeneity in product/shape models. Literature provides separate classifications for volumetric, deformation and free-form surface features. The unified taxonomy proposed allows classification, representation and extraction of shape features in a product model. The novelty of the taxonomy is that the classification is based purely on shape entities and therefore it is possible to automatically extract the features from any shape model. This enables the use of this taxonomy to build reference ontology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of semantic interoperability arises while integrating applications in different task domains across the product life cycle. A new shape-function-relationship (SFR) framework is proposed as a taxonomy based on which an ontology is developed. Ontology based on the SFR framework, that captures explicit definition of terminology and knowledge relationships in terms of shape, function and relationship descriptors, offers an attractive approach for solving semantic interoperability issue. Since all instances of terms are based on single taxonomy with a formal classification, mapping of terms requires a simple check on the attributes used in the classification. As a preliminary study, the framework is used to develop ontology of terms used in the aero-engine domain and the ontology is used to resolve the semantic interoperability problem in the integration of design and maintenance. Since the framework allows a single term to have multiple classifications, handling context dependent usage of terms becomes possible. Automating the classification of terms and establishing the completeness of the classification scheme are being addressed presently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data clustering groups data so that data which are similar to each other are in the same group and data which are dissimilar to each other are in different groups. Since generally clustering is a subjective activity, it is possible to get different clusterings of the same data depending on the need. This paper attempts to find the best clustering of the data by first carrying out feature selection and using only the selected features, for clustering. A PSO (Particle Swarm Optimization)has been used for clustering but feature selection has also been carried out simultaneously. The performance of the above proposed algorithm is evaluated on some benchmark data sets. The experimental results shows the proposed methodology outperforms the previous approaches such as basic PSO and Kmeans for the clustering problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a cooperative particle swarm optimization (CPSO) based channel estimation/equalization scheme for multiple-input multiple-output zero-padded single-carrier (MIMO-ZPSC) systems with large dimensions in frequency selective channels. We estimate the channel state information at the receiver in time domain using a PSO based algorithm during training phase. Using the estimated channel, we perform information symbol detection in the frequency domain using FFT based processing. For this detection, we use a low complexity OLA (OverLap Add) likelihood ascent search equalizer which uses minimum mean square (MMSE) equalizer solution as the initial solution. Multiple iterations between channel estimation and data detection are carried out which significantly improves the mean square error and bit error rate performance of the receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19' and R-phases, and (Ti,Hf)(2)Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19' martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)(2)Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)(2)Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 degrees C in the as-deposited condition as well as in the postannealed (at 600 degrees C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni3Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200-250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (NixTiySi) at the film-substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region similar to 250-300 nm just above the film substrate interface. (C) 2013 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.