921 resultados para Shape memory polymers
Resumo:
Abstract is not available.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
Synthesis, spectroscopic and thermal characterization of two new classes of polysulfide polymers: poly[1(phenoxymethyl) ethylene polysulfide] (PPMEP), and poly [1-(phenoxy) ethylene polysulfide] (PPEP) is presented. The direct pyrolysis mass spectrometry (DP-MS) technique, used to study the thermal degradation behavior of these polysulfide polymers, indicated that the polymers underwent degradation through the weak-links scission. The thermal stability of the polysulfide polymers decreased as the ``rank'' (number of sulfur atoms in the polysulfide linkage; n=1, 2, 4) increased. The main-chain flexibility of these polysulfide polymers in terms of their C-13 NMR spinlattice relaxation time (T-1) measurements on the backbone methine (-CH-) and methylene (-CH2-) carbons are reported here for the first time. A comparative study of the solution chain dynamics indicated that it increased as ``rank'' of the polysulfide linkages decreased as well as by introducing side chain spacers such as, ether (-O-) or methyleneoxy (-CH2O-) groups.
A combination of local inflammation and central memory T cells potentiates immunotherapy in the skin
Resumo:
Adoptive T cell therapy uses the specificity of the adaptive immune system to target cancer and virally infected cells. Yet the mechanism and means by which to enhance T cell function are incompletely described, especially in the skin. In this study, we use a murine model of immunotherapy to optimize cell-mediated immunity in the skin. We show that in vitro - derived central but not effector memory-like T cells bring about rapid regression of skin-expressing cognate Ag as a transgene in keratinocytes. Local inflammation induced by the TLR7 receptor agonist imiquimod subtly yet reproducibly decreases time to skin graft rejection elicited by central but not effector memory T cells in an immunodeficient mouse model. Local CCL4, a chemokine liberated by TLR7 agonism, similarly enhances central memory T cell function. In this model, IL-2 facilitates the development in vivo of effector function from central memory but not effector memory T cells. In a model of T cell tolerogenesis, we further show that adoptively transferred central but not effector memory T cells can give rise to successful cutaneous immunity, which is dependent on a local inflammatory cue in the target tissue at the time of adoptive T cell transfer. Thus, adoptive T cell therapy efficacy can be enhanced if CD8+ T cells with a central memory T cell phenotype are transferred, and IL-2 is present with contemporaneous local inflammation. Copyright © 2012 by The American Association of Immunologists, Inc.
Resumo:
Antigen stimulation of naive T cells in conjunction with strong costimulatory signals elicits the generation of effector and memory populations. Such terminal differentiation transforms naive T cells capable of differentiating along several terminal pathways in response to pertinent environmental cues into cells that have lost developmental plasticity and exhibit heightened responsiveness. Because these cells exhibit little or no need for the strong costimulatory signals required for full activation of naive T cells, it is generally considered memory and effector T cells are released from the capacity to be inactivated. Here, we show that steadystate dendritic cells constitutively presenting an endogenously expressed antigen inactivate fully differentiated memory and effector CD8+ T cells in vivo through deletion and inactivation. These findings indicate that fully differentiated effector and memory T cells exhibit a previously unappreciated level of plasticity and provide insight into how memory and effector T-cell populations may be regulated. © 2008 by The American Society of Hematology.
Resumo:
Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases. Copyright © 2010 by The American Association of Immunologists, Inc.
Resumo:
Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.
Resumo:
Two new coordination polymers [Cu(L-1)(2)](n)(ClO4)(n)center dot 2nH(2)O (1), [Cu(L-2)(2)](n)(ClO4)(n)center dot 2nH(2)O (2) of polydentate imine/pyridyl ligands, L-1 and L-2 with Cu(I) ion have been synthesized and characterized by single crystal X-ray diffraction studies, elemental analyses, IR' UV-vis and NMR spectroscopy. They represent 3-dimensional, sixfold interpenetrating diamondoid network structures having large pores of dimension, 35 x 21 angstrom(2) in 1 and 38 x 19 angstrom(2) in 2, respectively.
Resumo:
The performance of surface aeration systems, among other key design variables, depends upon the geometric parameters of the aeration tank. Efficient performance and scale up or scale down of the experimental results of an aeration ystem requires optimal geometric conditions. Optimal conditions refer to the conditions of maximum oxygen transfer rate, which assists in scaling up or down the system for ommercial utilization. The present work investigates the effect of an aeration tank's shape (unbaffled circular, baffled circular and unbaffled square) on oxygen transfer. Present results demonstrate that there is no effect of shape on the optimal geometric conditions for rotor position and rotor dimensions. This experimentation shows that circular tanks (baffled or unbaffled) do not have optimal geometric conditions for liquid transfer, whereas the square cross-section tank shows a unique geometric shape to optimize oxygen transfer.
Resumo:
Hyperbranched polyethers having poly(ethylene glycol) (PEG) segments at their molecular periphery were prepared by a simple procedure wherein an AB2 type monomer was melt-polycondensed with an A-type monomer, namely, heptaethylene glycol monomethyl ether. The presence of a large number of PEG units at the termini rendered a lower critical solution temperature (LCST) to these copolymers, above which they precipitated out of an aqueous solution. In an effort to understand the effect of various molecular structural parameters on their LCST, the length of the hydrophobic spacer segment within the hyperbranched core and the extent of PEGylation were varied. Additionally, linear analogues that incorporates pendant PEG segments were also prepared and comparison of their LCST with that of the hyperbranched analogue clearly revealed that hyperbranched topology leads to a substantial increase in the LCST, highlighting the importance of the peripheral placement of the PEG units.
Resumo:
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In our effort to explore the use of the sulfite ion to design hybrid and open-framework materials, we have been able to prepare, under hydrothermal conditions, zero-dimensional [Zn(C12H8N2)(SO3)]center dot 2H(2)O, I (a = 7.5737(5) angstrom, b = 10.3969(6) angstrom, c = 10.3986(6) angstrom, alpha = 64.172(1)degrees, beta = 69.395(1)degrees, gamma = 79.333(1)degrees, Z = 2, and space group P (1) over bar), one-dimensional [Zn-2(C12H8N2)(SO3)(2)(H2O)], II (a = 8.0247(3) angstrom, b = 9.4962(3) angstrom, c = 10.2740(2) A, alpha = 81.070(1)degrees, beta = 80.438(1)degrees, gamma = 75.66(5)degrees, Z = 2, and space group P (1) over bar), two-dimensional [Zn-2(C10H8N2)(SO3)(2)]center dot H2O, III (a = 16.6062(1) angstrom, b = 4.7935(1) angstrom, c = 19.2721(5) angstrom, beta = 100.674(2)degrees, Z = 4, and space group C2/c), and three-dimensional [Zn-4(C6H12N2)(SO3)(4)(H2O)(4)], IV (a = 11.0793(3) angstrom, c = 8.8246(3) angstrom, Z = 2, and space group P42nm), of which the last three are coordination polymers. A hybrid open-framework sulfite-sulfate of the composition [C2H10N2][Nd(SO3)(SO4)(H2O)](2), V (a = 9.0880(3) angstrom, b = 6.9429(2) angstrom, c = 13.0805(5) A, beta = 91.551(2)degrees, Z = 2, and space group P2(1)/c), with a layered structure containing metal-oxygen-metal bonds has also been described.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.