976 resultados para Selection criterion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outlier detection in high dimensional categorical data has been a problem of much interest due to the extensive use of qualitative features for describing the data across various application areas. Though there exist various established methods for dealing with the dimensionality aspect through feature selection on numerical data, the categorical domain is actively being explored. As outlier detection is generally considered as an unsupervised learning problem due to lack of knowledge about the nature of various types of outliers, the related feature selection task also needs to be handled in a similar manner. This motivates the need to develop an unsupervised feature selection algorithm for efficient detection of outliers in categorical data. Addressing this aspect, we propose a novel feature selection algorithm based on the mutual information measure and the entropy computation. The redundancy among the features is characterized using the mutual information measure for identifying a suitable feature subset with less redundancy. The performance of the proposed algorithm in comparison with the information gain based feature selection shows its effectiveness for outlier detection. The efficacy of the proposed algorithm is demonstrated on various high-dimensional benchmark data sets employing two existing outlier detection methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linearization of the Drucker-Prager yield criterion associated with an axisymmetric problem has been achieved by simulating a sphere with the truncated icosahedron with 32 faces and 60 vertices. On this basis, a numerical formulation has been proposed for solving an axisymmetric stability problem with the usage of the lower-bound limit analysis, finite elements, and linear optimization. To compare the results, the linearization of the Mohr-Coulomb yield criterion, by replacing the three cones with interior polyhedron, as proposed earlier by Pastor and Turgeman for an axisymmetric problem, has also been implemented. The two formulations have been applied for determining the collapse loads for a circular footing resting on a cohesive-friction material with nonzero unit weight. The computational results are found to be quite convincing. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilking has recently shown that one can associate a Ricci flow invariant cone of curvature operators , which are nonnegative in a suitable sense, to every invariant subset . In this article we show that if is an invariant subset of such that is closed and denotes the cone of curvature operators which are positive in the appropriate sense then one of the two possibilities holds: (a) The connected sum of any two Riemannian manifolds with curvature operators in also admits a metric with curvature operator in (b) The normalized Ricci flow on any compact Riemannian manifold with curvature operator in converges to a metric of constant positive sectional curvature. We also point out that if is an arbitrary subset, then is contained in the cone of curvature operators with nonnegative isotropic curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timer-based selection scheme is a popular, simple, and distributed scheme that is used to select the best node from a set of available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal timer mapping that maximizes the average success probability for the practical scenario in which the number of nodes in the system is unknown but only its probability distribution is known. We show that it has a special discrete structure, and present a recursive characterization to determine it. We benchmark its performance with ad hoc approaches proposed in the literature, and show that it delivers significant gains. New insights about the optimality of some ad hoc approaches are also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For any n(t) transmit, n(r) receive antenna (n(t) x n(r)) multiple-input multiple-output (MIMO) system in a quasi-static Rayleigh fading environment, it was shown by Elia et al. that linear space-time block code schemes (LSTBC schemes) that have the nonvanishing determinant (NVD) property are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r) if they have a code rate of n(t) complex dimensions per channel use. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of a few LSTBC schemes, it is unknown whether general LSTBC schemes with NVD and a code rate of n(r) complex dimensions per channel use are DMT optimal. In this paper, an enhanced sufficient criterion for any STBC scheme to be DMT optimal is obtained, and using this criterion, it is established that any LSTBC scheme with NVD and a code rate of min {n(t), n(r)} complex dimensions per channel use is DMT optimal. This result settles the DMT optimality of several well-known, low-ML-decoding-complexity LSTBC schemes for certain asymmetric MIMO systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers antenna selection (AS) at a receiver equipped with multiple antenna elements but only a single radio frequency chain for packet reception. As information about the channel state is acquired using training symbols (pilots), the receiver makes its AS decisions based on noisy channel estimates. Additional information that can be exploited for AS includes the time-correlation of the wireless channel and the results of the link-layer error checks upon receiving the data packets. In this scenario, the task of the receiver is to sequentially select (a) the pilot symbol allocation, i.e., how to distribute the available pilot symbols among the antenna elements, for channel estimation on each of the receive antennas; and (b) the antenna to be used for data packet reception. The goal is to maximize the expected throughput, based on the past history of allocation and selection decisions, and the corresponding noisy channel estimates and error check results. Since the channel state is only partially observed through the noisy pilots and the error checks, the joint problem of pilot allocation and AS is modeled as a partially observed Markov decision process (POMDP). The solution to the POMDP yields the policy that maximizes the long-term expected throughput. Using the Finite State Markov Chain (FSMC) model for the wireless channel, the performance of the POMDP solution is compared with that of other existing schemes, and it is illustrated through numerical evaluation that the POMDP solution significantly outperforms them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data clustering groups data so that data which are similar to each other are in the same group and data which are dissimilar to each other are in different groups. Since generally clustering is a subjective activity, it is possible to get different clusterings of the same data depending on the need. This paper attempts to find the best clustering of the data by first carrying out feature selection and using only the selected features, for clustering. A PSO (Particle Swarm Optimization)has been used for clustering but feature selection has also been carried out simultaneously. The performance of the above proposed algorithm is evaluated on some benchmark data sets. The experimental results shows the proposed methodology outperforms the previous approaches such as basic PSO and Kmeans for the clustering problem.