848 resultados para Schizophrenia.
Resumo:
Postmortem prefrontal cortices (PFC) (Brodmann’s areas 10 and 46), temporal cortices (Brodmann’s area 22), hippocampi, caudate nuclei, and cerebella of schizophrenia patients and their matched nonpsychiatric subjects were compared for reelin (RELN) mRNA and reelin (RELN) protein content. In all of the brain areas studied, RELN and its mRNA were significantly reduced (≈50%) in patients with schizophrenia; this decrease was similar in patients affected by undifferentiated or paranoid schizophrenia. To exclude possible artifacts caused by postmortem mRNA degradation, we measured the mRNAs in the same PFC extracts from γ-aminobutyric acid (GABA)A receptors α1 and α5 and nicotinic acetylcholine receptor α7 subunits. Whereas the expression of the α7 nicotinic acetylcholine receptor subunit was normal, that of the α1 and α5 receptor subunits of GABAA was increased when schizophrenia was present. RELN mRNA was preferentially expressed in GABAergic interneurons of PFC, temporal cortex, hippocampus, and glutamatergic granule cells of cerebellum. A protein putatively functioning as an intracellular target for the signal-transduction cascade triggered by RELN protein released into the extracellular matrix is termed mouse disabled-1 (DAB1) and is expressed at comparable levels in the neuroplasm of the PFC and hippocampal pyramidal neurons, cerebellar Purkinje neurons of schizophrenia patients, and nonpsychiatric subjects; these three types of neurons do not express RELN protein. In the same samples of temporal cortex, we found a decrease in RELN protein of ≈50% but no changes in DAB1 protein expression. We also observed a large (up to 70%) decrease of GAD67 but only a small decrease of GAD65 protein content. These findings are interpreted within a neurodevelopmental/vulnerability “two-hit” model for the etiology of schizophrenia.
Resumo:
Objectives: To investigate whether intensive cognitive behaviour therapy results in significant improvement in positive psychotic symptoms in patients with chronic schizophrenia.
Resumo:
Objective To provide a comprehensive survey of the content and quality of intervention studies relevant to the treatment of schizophrenia.
Resumo:
Schizophrenia is a serious brain disease of uncertain etiology. A role for retroviruses in the etiopathogenesis of some cases of schizophrenia has been postulated on the basis of clinical and epidemiological observations. We found sequences homologous to retroviral pol genes in the cell-free cerebrospinal fluids (CSFs) of 10 of 35 (29%) individuals with recent-onset schizophrenia or schizoaffective disorder. Retroviral sequences also were identified in the CSFs of 1 of 20 individuals with chronic schizophrenia. However, retroviral sequences were not identified in any of the CSFs obtained from 22 individuals with noninflammatory neurological diseases or from 30 individuals without evidence of neurological or psychiatric diseases (χ2 = 19.25, P < 0.001). The nucleotide sequences identified in the CSFs of the individuals with schizophrenia or schizoaffective disorder were related to those of the human endogenous retroviral (HERV)-W family of endogenous retroviruses and to other retroviruses in the murine leukemia virus genus. Transcription of RNA homologous to members of the HERV-W family of retroviruses also was found to be up-regulated differentially in the frontal cortex regions of brains obtained postmortem from individuals with schizophrenia, as compared with corresponding tissue from individuals without psychiatric diseases. The transcriptional activation of certain retroviral elements within the central nervous system may be associated with the development of schizophrenia in at least some individuals. The further characterization of retroviral elements within the central nervous system of individuals with schizophrenia might lead to improved methods for the diagnosis and management of this disorder.
Resumo:
Neuropathological and brain imaging studies suggest that schizophrenia may result from neurodevelopmental defects. Cytoarchitectural studies indicate cellular abnormalities suggestive of a disruption in neuronal connectivity in schizophrenia, particularly in the dorsolateral prefrontal cortex. Yet, the molecular mechanisms underlying these findings remain unclear. To identify molecular substrates associated with schizophrenia, DNA microarray analysis was used to assay gene expression levels in postmortem dorsolateral prefrontal cortex of schizophrenic and control patients. Genes determined to have altered expression levels in schizophrenics relative to controls are involved in a number of biological processes, including synaptic plasticity, neuronal development, neurotransmission, and signal transduction. Most notable was the differential expression of myelination-related genes suggesting a disruption in oligodendrocyte function in schizophrenia.
Resumo:
Retinoid dysregulation may be an important factor in the etiology of schizophrenia. This hypothesis is supported by three independent lines of evidence that triangulate on retinoid involvement in schizophrenia: (i) congenital anomalies similar to those caused by retinoid dysfunction are found in schizophrenics and their relatives; (ii) those loci that have been suggestively linked to schizophrenia are also the loci of the genes of the retinoid cascade (convergent loci); and (iii) the transcriptional activation of the dopamine D2 receptor and numerous schizophrenia candidate genes is regulated by retinoic acid. These findings suggest a close causal relationship between retinoids and the underlying pathophysiological defects in schizophrenia. This leads to specific strategies for linkage analyses in schizophrenia. In view of the heterodimeric nature of the retinoid nuclear receptor transcription factors, e.g., retinoid X receptor β at chromosome 6p21.3 and retinoic acid receptor β at 3p24.3, two-locus linkage models incorporating genes of the retinoid cascade and their heterodimeric partners, e.g., peroxisome proliferator-activated receptor α at chromosome 22q12-q13 or nuclear-related receptor 1 at chromosome 2q22-q23, are proposed. New treatment modalities using retinoid analogs to alter the downstream expression of the dopamine receptors and other genes that are targets of retinoid regulation, and that are thought to be involved in schizophrenia, are suggested.
Resumo:
On November 29–30, 1995, the National Academy of Sciences and the Institute of Medicine brought together experts in schizophrenia and specialists in other areas of the biological sciences in a workshop aimed at promoting the application of the latest biological information to this clinical problem. The workshop paid particular attention to evidence of pathology in the brains of people with schizophrenia, and to the possibility that this reflects an abnormality in brain development that eventually leads to the appearance of symptoms. The participants were impressed with the complexity of the problem, and felt that multiple approaches would be required to understand this disease. They recommended that a major focus should be on the search for predisposing genes, but that there should be parallel research in many other areas.
Resumo:
Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val108/158 Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11–16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.