974 resultados para Sap flow density
Resumo:
To facilitate the implementation of workflows, enterprise and workflow system vendors typically provide workflow templates for their software. Each of these templates depicts a variant of how the software supports a certain business process, allowing the user to save the effort of creating models and links to system components from scratch by selecting and activating the appropriate template. A combination of the strengths from different templates is however only achievable by manually adapting the templates which is cumbersome. We therefore suggest in this paper to combine different workflow templates into a single configurable workflow template. Using the workflow modeling language of SAP’s WebFlow engine, we show how such a configurable workflow modeling language can be created by identifying the configurable elements in the original language. Requirements imposed on configurations inhibit invalid configurations. Based on a default configuration such configurable templates can be used as easy as the traditional templates. The suggested approach is also applicable to other workflow modeling languages
Resumo:
The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.
Resumo:
Background: High-flow nasal cannulae (HFNC) create positive oropharyngeal airway pressure but it is unclear how their use affects lung volume. Electrical impedance tomography (EIT) allows assessment of changes in lung volume by measuring changes in lung impedance. Primary objectives were to investigate the effects of HFNC on airway pressure (Paw) and end-expiratory lung volume (EELV), and to identify any correlation between the two. Secondary objectives were to investigate the effects of HFNC on respiratory rate (RR), dyspnoea, tidal volume and oxygenation; and the interaction between body mass index (BMI) and EELV. Methods: Twenty patients prescribed HFNC post-cardiac surgery were investigated. Impedance measures, Paw, PaO2/FiO2 ratio, RR and modified Borg scores were recorded first on low flow oxygen (nasal cannula or Hudson face mask) and then on HFNC. Results: A strong and significant correlation existed between Paw and end-expiratory lung impedance (EELI) (r=0.7, p<0.001). Compared with low flow oxygen, HFNC significantly increased EELI by 25.6% (95% CI 24.3, 26.9) and Paw by 3.0 cmH2O (95% CI 2.4, 3.7). RR reduced by 3.4 breaths per minute (95% CI 1.7, 5.2) with HFNC use, tidal impedance variation increased by 10.5% (95% CI 6.1, 18.3) and PaO2/FiO2 ratio improved by 30.6 mmHg (95% CI 17.9, 43.3). HFNC improved subjective dyspnoea scoring (p=0.023). Increases in EELI were significantly influenced by BMI, with larger increases associated with higher BMIs (p<0.001). Conclusions: This study suggests that HFNC improve dyspnoea and oxygenation by increasing both EELV and tidal volume, and are most beneficial in patients with higher BMIs.
Resumo:
Natural convection flow in a two-dimensional fluid saturated porous enclosure with localized heating from below, symmetrical cooling from the sides and the top and rest of the bottom walls are insulated, has been investigated numerically. Darcy’s law for porous media along with the energy equation based on the 1st law of thermodynamics has been considered. Implicit finite volume method with TDMA solver is used to solve the governing equations. Localized heating is simulated by a centrally located isothermal heat source on the bottom wall, and four different values of the dimensionless heat source length, 1/5, 2/5, 3/5 and 4/5 are considered. The effect of heat source length and the Rayleigh number on streamlines and isotherms are presented, as well as the variation of the local rate of heat transfer in terms of the local Nusselt number from the heated wall. Finally, the average Nusselt number at the heated part of the bottom wall has been shown against Rayleigh number for the non-dimensional heat source length.
Resumo:
Increasing the population density of urban areas is a key policy strategy to sustainably manage growth, but many residents often view higher density living as an undesirable long-term housing option. Thus, this research explores the predictors of residential satisfaction in inner urban higher-density (IUHD) environments, surveying 636 IUHD residents in Brisbane, Australia about the importance of dwelling, neighbours and neighbourhood. Relationships with immediate neighbours did not predict residential satisfaction, but features of the neighbourhood and dwelling were critical, specifically satisfaction with dwelling position, design and facilities, and social contacts (family and friends) in the neighbourhood. Identifying the factors that influence residential satisfaction in IUHD will assist with both planning and design, helping ensure a lower resident turnover rate and greater uptake of high density living.
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
Introduction: An observer, looking sideways from a moving vehicle, while wearing a neutral density filter over one eye, can have a distorted perception of speed, known as the Enright phenomenon. The purpose of this study was to determine how the Enright phenomenon influences driving behaviour. Methods: A geometric model of the Enright phenomenon was developed. Ten young, visually normal, participants (mean age = 25.4 years) were tested on a straight section of a closed driving circuit and instructed to look out of the right side of the vehicle and drive at either 40 Km/h or 60 Km/h under the following binocular viewing conditions: with a 0.9 ND filter over the left eye (leading eye); 0.9 ND filter over the right eye (trailing eye); 0.9 ND filters over both eyes, and with no filters over either eye. The order of filter conditions was randomised and the speed driven recorded for each condition. Results: Speed judgments did not differ significantly between the two baseline conditions (no filters and both eyes filtered) for either speed tested. For the baseline conditions, when subjects were asked to drive at 60 Km/h they matched this speed well (61 ± 10.2 Km/h) but drove significantly faster than requested (51.6 ± 9.4 Km/h) when asked to drive at 40 Km/h. Subjects significantly exceeded baseline speeds by 8.7± 5.0 Km/h, when the trailing eye was filtered and travelled slower than baseline speeds by 3.7± 4.6 Km/h when the leading eye was filtered. Conclusions: This is the first quantitative study demonstrating how the Enright effect can influence perceptions of driving speed, and demonstrates that monocular filtering of an eye can significantly impact driving speeds, albeit to a lesser extent than predicted by geometric models of the phenomenon.
Impact of the Charge Density of Phospholipid Bilayers on Lubrication of Articular Cartilage Surfaces
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.