876 resultados para Sandhall, Åke: Ötökät
Resumo:
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.
Resumo:
Immediately following lunch, our women panelists will speak about the mathematics courses they took and the role mathematics plays in their chosen career, followed by questions from the audience.
Resumo:
The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok−/−Bak−/− and Bok−/−Bax−/− mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok−/−Bax−/− females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.
Resumo:
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Resumo:
Humans and dogs are both affected by the allergic skin disease atopic dermatitis (AD), caused by an interaction between genetic and environmental factors. The German shepherd dog (GSD) is a high-risk breed for canine AD (CAD). In this study, we used a Swedish cohort of GSDs as a model for human AD. Serum IgA levels are known to be lower in GSDs compared to other breeds. We detected significantly lower IgA levels in the CAD cases compared to controls (p = 1.1 × 10(-5)) in our study population. We also detected a separation within the GSD cohort, where dogs could be grouped into two different subpopulations. Disease prevalence differed significantly between the subpopulations contributing to population stratification (λ = 1.3), which was successfully corrected for using a mixed model approach. A genome-wide association analysis of CAD was performed (n cases = 91, n controls = 88). IgA levels were included in the model, due to the high correlation between CAD and low IgA levels. In addition, we detected a correlation between IgA levels and the age at the time of sampling (corr = 0.42, p = 3.0 × 10(-9)), thus age was included in the model. A genome-wide significant association was detected on chromosome 27 (praw = 3.1 × 10(-7), pgenome = 0.03). The total associated region was defined as a ~1.5-Mb-long haplotype including eight genes. Through targeted re-sequencing and additional genotyping of a subset of identified SNPs, we defined 11 smaller haplotype blocks within the associated region. Two blocks showed the strongest association to CAD. The ~209-kb region, defined by the two blocks, harbors only the PKP2 gene, encoding Plakophilin 2 expressed in the desmosomes and important for skin structure. Our results may yield further insight into the genetics behind both canine and human AD.
Resumo:
Using a weighted up-down procedure, in each of eight conditions 28 participants compared durations of auditory (noise bursts) or visual (LED flashes) intervals; filled or unfilled with 3-ms markers; with or without feedback. Standards (Sts) were 100 and 1000 ms, and the ISI 900 ms. Intermixedly, presentation orders were St-Comparison (Co) and Co-St. TOEs were positive for St=100-ms and negative for St=1000 ms. Weber fractions (WFs, JND/St) were lowered by feedback. For visual-filled and visual-empty, WFs were highest for St=100 ms. For auditory-filled and visual-empty, St interacted with Order: lowest WFs occurred for St-Co with St=1000 ms, but for Co-St with St=100 ms. Lowest average WFs occurred with St-Co for visual-filled, but with Co-St for visual-empty. The results refute the generalization of better discrimination with St-Co than with Co-St (”type-B effect”), and support the notion of sensation weighting: flexibly differential impact weights of the compared durations in generating the response.
Resumo:
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics