979 resultados para Sample Preparation
Resumo:
Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.
Resumo:
Orthopaedic infections can be polymicrobial existing as a microbiome. Infections often incorporate staphylococcal species, including Staphylococcus aureus. Such infections can lead to life threatening illness and implant failure. Furthermore, biofilm formation on the implant surface can occur, increasing pathogenicity, exacerbating antibiotic resistance and altering antimicrobial mechanism of action. Bacteria change dramatically during the transition to a biofilm growth state: phenotypically; transcriptionally; and metabolically, highlighting the need for research into molecular mechanisms involved in biofilm formation. Metabolomics can provide a tool to analyse metabolic changes which are directly related to the expressed phenotype. Here, we aimed to provide greater understanding of orthopaedic infection caused by S. aureus and biofilm formation on the implant surface. Through metagenome analysis by employing: implant material extraction; DNA extraction; microbial enrichment; and whole genome sequencing, we present a microbiome study of the infected prosthesis to resolve the causative species of orthopaedic hip infection. Results highlight the presence of S. aureus as a primary cause of orthopaedic infection along with Enterococcus faecium and the presence of secondary pathogen Clostridium difficile. Although results were hindered by the presence of host contaminating DNA even after microbial enrichment, conclusions could be made over the potential increased pathogenicity caused by the presence of a secondary pathogen and highlight method and sample preparation considerations when undertaking such a study. Following this finding, studies were focused on an orthopaedic clinical isolate of S. aureus and a metabolome extraction method for staphylococcal biofilms was developed using cell lysis through bead beating and solvent metabolome extraction. The method was found to be reproducible when coupled with liquid chromatography-mass spectrometry (LC-MS) and bioinformatics, allowing for the detection of significant changes in metabolism between planktonic and biofilm cultures to be identified and drug mechanism of actions (MOA) to be studied. Metabolomics results highlight significant changes in a number of metabolic pathways including arginine biosynthesis and purine metabolism between the two cell populations, evidence of S. aureus responding to their changing environment, including oxygen availability and a decrease in pH. Focused investigations on purine metabolism looking for biofilm modulation effects were carried out. Modulation of the S. aureus biofilm phenotype was observed through the addition of exogenous metabolites. Inosine increased biofilm biomass while formycin B, an inosine analogue, showed a dispersal effect and a potential synergistic effect in biofilm dispersal when coupled with gentamycin. Changes in metabolism between planktonic cells and biofilms highlight the requirement for antimicrobial testing to be carried out against planktonic cells and biofilms. Untargeted metabolomics was used to study the MOA of triclosan in S. aureus. The triclosan target and MOA in bacteria has already been characterised, however, questions remain over its effects in bacteria. Although the use of triclosan has come under increasing speculation, its full effects are still largely unknown. Results show that triclosan can induce a cascade of detrimental events in the cell metabolism including significant changes in amino acid metabolism, affecting planktonic cells and biofilms. Results and conclusions provide greater understanding of orthopaedic infections and specifically focus on the S. aureus biofilm, confirming S. aureus as a primary cause of orthopaedic infection and using metabolomic analysis to look at the changing state of metabolism between the different growth states. Metabolomics is a valuable tool for biofilm and drug MOA studies, helping understand orthopaedic infection and implant failure, providing crucial insight into the biochemistry of bacteria for the potential for inferences to be gained, such as the MOA of antimicrobials and the identification of novel metabolic drug targets.
Resumo:
Os Hidrocarbonetos Aromáticos Policíclicos (HAPs) são contaminantes persistentes em meio aquoso. Estes compostos são conhecidos pelas suas propriedades carcinogénicas, mutagénicas e genotóxicas. O principal objetivo deste trabalho consistiu na avaliação das potencialidades de subprodutos da indústria corticeira, como adsorventes alternativos para a remoção de cinco HAPs em meio aquoso: benzo(a)pireno, benzo(ghi)perileno, benzo(b)fluoranteno, benzo(k)fluoranteno e indeno(1,2,3-cd)pireno. A metodologia analítica para quantificar os HAPs envolveu a preparação das amostras, através da técnica de extração em fase sólida (SPE), e a quantificação dos compostos analisados por cromatografia líquida com detetor de fluorescência (LC-FLD). O método foi otimizado e validado, obtendo-se limites de quantificação de 0,004 μg/L para todos os HAPs. Os estudos incidiram na utilização de uma amostra de cortiça, pó de aglomerado de cortiça expandida (PACE), obtida por aglutinação de cortiça em condições hidrotérmicas, a qual nos estudos preliminares revelou desempenho semelhante aos carvões ativados. Com exceção do benzo(ghi)perileno, os resultados mostram que o processo de adsorção dos HAPs na amostra PACE segue uma cinética de pseudo-segunda ordem e as isotérmicas ajustam-se ao modelo de Langmuir.
Resumo:
The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including A. minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 105 cells/L within 30 min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research.
Resumo:
A aplicação de agrotóxicos nas práticas agrícolas aumentou muito nos últimos anos. Isto vem ocorrendo devido ao crescimento populacional, demandando maior produção de alimentos. O uso de agrotóxicos e seus resíduos tornaram-se um problema devido a possível contaminação das águas de superfície e subterrânea, podendo impactar o meio ambiente e causar danos à saúde pública. Na cidade de Rio Grande, RS, Brasil, o suprimento de água potável é realizado pela CORSAN (Companhia Riograndense de Saneamento), que capta a água do Canal São Gonçalo, o qual estabelece uma ligação entre as duas lagoas: Lagoa dos Patos e Lagoa Mirim. Em suas margens há também a captação de água para irrigação das culturas agrícolas. Esta interação entre o uso da água das lagoas e a agricultura, pode resultar na contaminação das águas que são captadas para abastecimento dos municípios situados na região. Uma metodologia analítica empregando Extração em Fase Sólida (SPE) e Cromatografia Líquida acoplada a uma fonte de ionização por Electrospray tandem Espectrometria de Massas (LCESI-MS/MS) foi desenvolvida e validada para a determinação de dezoito agrotóxicos multiclasses (herbicidas, inseticidas e fungicidas) e dois metabólitos em amostras de água superficial e de abastecimento público. Esta metodologia foi aplicada para monitoramento durante dez meses na água superficial do Canal São Gonçalo e na água de consumo da cidade de Rio Grande, após o tratamento pela CORSAN. Os agrotóxicos selecionados foram: clomazona, bispiribaque-sódio, diurom, atrazina, simazina, imazetapir, imazapique, metsulfuron-metílico, quincloraque, penoxsulam, 2,4-D, pirazosulfuron-etílico, bentazona, propanil, irgarol, tebuconazol, fipronil e carbofurano. Os metabólitos foram: 3,4-DCA e 3-hidroxicarbofurano. Os limites de detecção do método variaram entre 0,4 – 40,0 ng L -1 , enquanto para os limites de quantificação a variação foi de 4,0 – 100,0 ng L -1 . Todos os compostos apresentaram excelente linearidade, com coeficiente de determinação maior do que 0,99. As recuperações empregando SPE com cartuchos contendo 500 mg de C18ec, variaram entre 70 a 120%, para 95% dos compostos, apresentando %RSD 20%. Através do monitoramento de múltiplas reações (MRM), duas transições diferentes (íon precursor – íon produto) foram selecionadas para cada composto, uma para quantificação e outra para confirmação, o que aumentou a seletividade do método. Para as amostras analisadas, foram detectados agrotóxicos nível de ng L -1 . O método desenvolvido é sensível, rápido e apresenta elevada seletividade, permitindo a identificação e a quantificação dos agrotóxicos em águas superficiais e de abastecimento público, atendendo os níveis requeridos pelos órgãos reguladores como da União Européia (98/83/EC) e do Brasil segundo a Portaria Nº. 518 (25/03/2004).
Resumo:
International audience
Resumo:
Este trabalho propõe o desenvolvimento de métodos de preparo de amostra empregando a microextração líquido-líquido dispersiva (DLLME) para a extração e pré- concentração de Fe e Cu em vinho, seguido da determinação espectrofotométrica na região do ultravioleta-visível (UV-Vis). Nas extrações por DLLME, a complexação de Fe e Cu foi feita com pirrolidina ditiocarbamato de amônio (APDC) e dietilditiocarbamato de sódio (DDTC), respectivamente. Para a DLLME, foi usada uma mistura apropriada de pequenos volumes de dois solventes, um extrator e outro dispersor, a qual foi rapidamente injetada na amostra aquosa, ocorrendo à formação de uma dispersão e a extração praticamente instantânea dos analitos. Na otimização da DLLME para extração de Fe foram avaliados alguns parâmetros como, tipo de solvente extrator (C2Cl4, 80 µL) e dispersor (acetonitrila, 1300 µL) e seus volumes, pH (3,0), concentração do APDC (1%, m/v), adição de NaCl (0,02 mol L -1 ) e tempo de extração. Para extração de Cu foi aplicado um planejamento fatorial completo 25 para avaliar a influência de cinco variáveis independentes: volume dos solventes dispersor (acetonitrila, 1600 µL) e extrator (CCl4, 60 µL), concentração de DDTC (2%, m/v), pH (3,0) e concentração de NaCl. Após a otimização das condições para Fe, a curva de calibração com adição de analito foi linear entre 0,2 e 2,5 mg L-1 para vinho branco (R2 = 0,9985) e para vinho tinto (R2 = 0,9988). Para Cu, a curva de calibração com adição de analito foi linear entre 0,05 e 1,0 mg L-1 para vinho branco (R2 = 0,9995) e para vinho tinto (R2 = 0,9986). Os limites de quantificação foram de 0,75 e 0,37 mg L-1 para Fe e Cu, respectivamente. A exatidão foi avaliada utilizando ensaio de recuperação, as quais variaram entre 96% e 112%, com desvio padrão relativo inferior a 8%. Os métodos foram aplicados para 5 amostras de vinho branco e 5 amostras de vinho tinto, obtendo-se concentrações entre 1,3 e 5,3 e entre 2,5 e 4,4 mg L-1 para Fe e entre 0,4 e 1,5 e entre 0,9 e 2,5 mg L-1 para Cu, respectivamente. Os métodos desenvolvidos para a extração e pré-concentração de Fe e Cu em vinhos por DLLME e quantificação por UV-Vis mostraram-se adequados, em termos de linearidade, exatidão e precisão.
Quantificação de açúcares com uma língua eletrónica: calibração multivariada com seleção de sensores
Resumo:
Este trabalho incide na análise dos açúcares majoritários nos alimentos (glucose, frutose e sacarose) com uma língua eletrónica potenciométrica através de calibração multivariada com seleção de sensores. A análise destes compostos permite contribuir para a avaliação do impacto dos açúcares na saúde e seu efeito fisiológico, além de permitir relacionar atributos sensoriais e atuar no controlo de qualidade e autenticidade dos alimentos. Embora existam diversas metodologias analíticas usadas rotineiramente na identificação e quantificação dos açúcares nos alimentos, em geral, estes métodos apresentam diversas desvantagens, tais como lentidão das análises, consumo elevado de reagentes químicos e necessidade de pré-tratamentos destrutivos das amostras. Por isso se decidiu aplicar uma língua eletrónica potenciométrica, construída com sensores poliméricos selecionados considerando as sensibilidades aos açucares obtidas em trabalhos anteriores, na análise dos açúcares nos alimentos, visando estabelecer uma metodologia analítica e procedimentos matemáticos para quantificação destes compostos. Para este propósito foram realizadas análises em soluções padrão de misturas ternárias dos açúcares em diferentes níveis de concentração e em soluções de dissoluções de amostras de mel, que foram previamente analisadas em HPLC para se determinar as concentrações de referência dos açúcares. Foi então feita uma análise exploratória dos dados visando-se remover sensores ou observações discordantes através da realização de uma análise de componentes principais. Em seguida, foram construídos modelos de regressão linear múltipla com seleção de variáveis usando o algoritmo stepwise e foi verificado que embora fosse possível estabelecer uma boa relação entre as respostas dos sensores e as concentrações dos açúcares, os modelos não apresentavam desempenho de previsão satisfatório em dados de grupo de teste. Dessa forma, visando contornar este problema, novas abordagens foram testadas através da construção e otimização dos parâmetros de um algoritmo genético para seleção de variáveis que pudesse ser aplicado às diversas ferramentas de regressão, entre elas a regressão pelo método dos mínimos quadrados parciais. Foram obtidos bons resultados de previsão para os modelos obtidos com o método dos mínimos quadrados parciais aliado ao algoritmo genético, tanto para as soluções padrão quanto para as soluções de mel, com R²ajustado acima de 0,99 e RMSE inferior a 0,5 obtidos da relação linear entre os valores previstos e experimentais usando dados dos grupos de teste. O sistema de multi-sensores construído se mostrou uma ferramenta adequada para a análise dos iii açúcares, quando presentes em concentrações maioritárias, e alternativa a métodos instrumentais de referência, como o HPLC, por reduzir o tempo da análise e o valor monetário da análise, bem como, ter um preparo mínimo das amostras e eliminar produtos finais poluentes.
Resumo:
Os fármacos classificados como contaminantes orgânicos emergentes tornaramse tópico de discussão ambiental pois estes são capazes de atingir diferentes matrizes do meio ambiente, como água, solo e organismos aquáticos, e estudos demonstrando a toxicidade tem despertado o interesse científico. Neste estudo um método analítico foi otimizado e validado para determinação de quinze fármacos em amostras de peixes empregando preparo de amostras por dispersão da matriz em fase sólida (MSPD) assistida por vórtex e determinação por cromatografia líquida acoplada a espectrometria de massas sequencial (LC-MS/MS). O estudo ainda focou na aplicação de diferentes suportes sólidos na etapa de dispersão da MSPD, sendo que três (quitina, quitosana e concha de mexilhão dourado) foram utilizados pela primeira vez para esta finalidade, O método otimizado foi validado seguindo os parâmetros do INMETRO, ANVISA, SANCO e FDA. A curva analítica e linearidade foram avaliados através da calibração externa e superposição na matriz. Os compostos demonstraram linearidade dentro da faixa recomendada, com coeficiente de correlação maior do que 0,99. Os limites de detecção do método variaram de 1 a 100 ng g -1 , e os limites de quantificação a variaram de 5 a 1000 ng g -1 . Os valores de recuperação variaram de 68% a 108%, com RSD menores que 13% para todos os compostos. O efeito de matriz foi avaliado e quatro dos quinze compostos apresentaram efeito maior que ±20%. Na aplicabilidade o método demonstrou ser eficiente para extração de fármacos de diferentes espécies de peixe, apresentando exatidão e precisão adequados. Não foram encontrados resíduos de fármacos nas amostras analisadas.
Resumo:
Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
As leveduras Dekkera/Brettanomyces são responsáveis pela formação de fenóis voláteis em vinhos tintos, tornando-se numa grande preocupação para a produção enológica a nível mundial, devido à dificuldade em controlá-las. Os fenóis voláteis são responsáveis por aromas desagradáveis nos vinhos tintos, diminuindo a sua qualidade e resultando em grandes perdas económicas. Este trabalho teve como principal objectivo estudar um método de preparação de amostra e um método cromatográfico para analisar e quantificar os principais fenóis voláteis (4-etilfenol, 4-etilguaiacol, 4-etilcatecol, 4-vinilfenol e o 4-vinilguaiacol), em meio sintético e em vinhos tintos comerciais. A preparação de amostras foi efectuada através do método de extracção líquido-líquido e a separação dos compostos foi efectuada por cromatografia gasosa com detector de ionização de chama (GC-FID). Os resultados obtidos permitem concluir que é possível detectar e quantificar os fenóis voláteis com este método, incluindo o 4-etilcatecol. O 4-etilfenol foi o composto mais abundante nos vinhos tintos comerciais estudados. ABSTRACT: The yeasts Dekkera I Brettanomyces are responsible for the formation of volatile phenols in red wine, becoming a major concern for the enological production worldwide because of the difficulty in controlling them. The volatile phenols are responsible for unpleasant aromas in red wines, reducing its quality and resulting in great economic lasses. The main objective of this work was to study a sample preparation and a chromatographic method to analyze main volatile phenols (4-ethylphenol, 4-ethylguaiacol, 4-ethylcatechol, 4-vinylphenol and 4-vinylguaiacol) in synthetic wine and red wines. Sample preparation was done by liquid-liquid extraction and compounds separation was achieved by gas chromatography with flame ionization detector (GC FID) Results showed that it is possible to detect and quantified volatile phenols with the methodology proposed, including 4-ethylcatechol. 4-ethylphenol was the main compound found in commercial red wines.
Resumo:
Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.