861 resultados para Salt marshes.
Resumo:
The knowledge of the physiology of Eucalyptus spp. germination may contribute significantly to the development of management and choice of suitability of the deployment areas. The aim was to evaluate the effects of water and salt stress on seed germination of Eucalyptus camaldulensis, E. citriodora, E. grandis, E. robusta and E. urophylla. The seeding was done with four replicates of 0.05 g of seeds in paper moistened with solutions at potentials of 0.0, -0.2, -0.4, and -0.8 MPa, induced with polyethylene glycol (PEG 6000) and NaCl. The germination test was in 25 degrees C in the presence of light. Were evaluated the first test score seven days after sowing, and weekly germination (normal seedlings) until 28 days. Were also calculated the germination speed index. Water stress causes a greater reduction in the rate of germination and accumulated germination of E. camaldulensis and E. citriodora seeds than salt stress, and the seeds of E. robusta are more adapted to germinate under salt stress moderate, between -0.2 and -0.4 MPa. Regardless of the substance used to induce stress, the threshold for germination was -0.8 MPa. The E. camaldulensis is the most sensitive specie to water stress and E. urophylla most sensitive to salt stress.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous research has demonstrated that dehydration increases the threshold temperature for panting and decreases the thermal preference of lizards. Conversely, it is unknown whether thermoregulatory responses such as shuttling and gaping are similarly influenced. Shuttling, as an active behavioural response, is considered one of the most effective thermoregulatory behaviours, whereas gaping has been proposed to be involved in preventing brain over-heating in lizards. In this study we examined the effect of salt loading, a proxy for increased plasma osmolality, on shuttling and gaping in Pogona vitticeps. Then, we determined the upper and lower escape ambient temperatures (UETa and LETa), the percentage of time spent gaping, the metabolic rate ((V) over dot(O2)), the evaporative water loss (EWL) during gaping and non-gaping intervals and the evaporative effectiveness (EWL/(V) over dot(O2)) of gaping. All experiments were performed under isotonic (154 mmol l(-1)) and hypertonic saline injections (625, 1250 or 2500 mmol l(-1)). Only the highest concentration of hypertonic saline altered the UETa and LETa, but this effect appeared to be the result of diminishing the animal's propensity to move, instead of any direct reduction in thermoregulatory set-points. Nevertheless, the percentage of time spent gaping was proportionally reduced according to the saline concentration; (V) over dot(O2) was also decreased after salt loading. Thermographic images revealed lower head than body surface temperatures during gaping; however this difference was inhibited after salt loading. Our data suggest that EWL/(V) over dot(O2) is raised during gaping, possibly contributing to an increase in heat transfer away from the lizard, and playing a role in head or brain cooling.
Resumo:
Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt-salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C(4)mim]Cl > [C(4)py]Cl > [C(4)mmim] Cl > [N-4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt-salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer-salt) or other polymers (polymer-polymer).
Resumo:
The gill monogene communities of Pimephales promelas (fathead minnow) in three distinct sites on converging streams were investigated from 2004 to 2006 in three different seasons. Thirty collections of P. promelas were made in southeastern Nebraska along three converging tributaries: Elk Creek (40.88534°N, 96.83366°W), West Oak Creek (40.9082°N, 96.81432°W), and Oak Creek (40.91402°N, 96.770583°W), Lancaster County, Nebraska. In all, 103 P. promelas were collected from Elk Creek, 115 from West Oak Creek, and 78 from Oak Creek and examined for gill monogenes. Among the P. promelas collected, 93.5% were infected with up to three species of Dactylogyrus, including Dactylogyrus simplex Mizelle, 1937, Dactylogyrus bychowskyi Mizelle, 1937, and Dactylogyrus pectenatus Mayes, 1977. Mean intensities at Elk Creek, West Oak Creek, and Oak Creek were 17.6, 22.8, and 25.1, and prevalences 88, 95, and 97%, respectively. At these three sites: (1) P. promelas does not share Dactylogyrus species with Semotilus atromaculatus (creek chub) or Notropis stramineus (sand shiner); (2) fish size and sex are not predictive of Dactylogyrus infection; (3) Dactylogyrus spp. vary (not always predictably) in their seasonal occurrence; (4) populations of Dactylogyrus spp. respond to environmental differences among sites; and (5) the community structure of Dactylogyrus spp. (order of abundance) is independent of environment.
Resumo:
An investigation was made of the communities of gill monogene genus Dactylogyrus (Platyhelminthes, Monogenea) and the populations of blackspot parasite (Platyhelminthes, Trematoda) of Pimephales promelas, Notropis stramineus, and Semotilus atromaculatus in 3 distinct sites along the 3 converging tributaries in southeastern Nebraska from 2004 to 2006. This work constitutes the first multi-site, multi-year study of a complex community of Dactylogyrus spp. and their reproductive activities on native North American cyprinid species. The biological hypothesis that closely related species with direct lifecycles respond differently to shared environmental conditions was tested. It was revealed that in this system that, Cyprinid species do not share Dactylogyrus species, host size and sex are not predictive of infection, and Dactylogyrus community structure is stable, despite variation in seasonal occurrence and populations among sites. The biological hypothesis that closely related species have innate differences in reproductive activities that provide structure to their populations and influence their roles in the parasite community was tested. It was revealed that in this system, host size, sex, and collection site are not predictive of reproductive activities, that egg production is not always continuous and varies in duration among congeners, and that recruitment of larval Dactylogyrus is not continuous across parasites’ reproductive periods. Hatch timing and host availability, not reproductive timing, are the critical factors determining population dynamics of the gill monogenes in time and space. Lastly, the biological hypothesis that innate blackspot biology is responsible for parasite host-specificity, host recruitment strategies and parasite population structure was tested. Field collections revealed that for blackspot, host size, sex, and collection month and year are not predictive of infection, that parasite cysts survive winter, and that host movement is restricted among the 3 collection sites. Finally, experimental infections of hosts with cercaria isolated from 1st intermediate snail hosts reveal that cercarial biology, not environmental circumstances, are responsible for differences in infection among hosts.
Resumo:
Objective. To describe individual attitudes, knowledge, and behavior regarding salt intake, its dietary sources, and current food-labeling practices related to salt and sodium in five sentinel countries of the Americas. Methods. A convenience sample of 1 992 adults (>= 18 years old) from Argentina, Canada, Chile, Costa Rica, and Ecuador (approximately 400 from each country) was obtained between September 2010 and February 2011. Data collection was conducted in shopping malls or major commercial areas using a questionnaire containing 33 questions. Descriptive estimates are presented for the total sample and stratified by country and sociodemographic characteristics of the studied population. Results. Almost 90% of participants associated excess intake of salt with the occurrence of adverse health conditions, more than 60% indicated they were trying to reduce their current intake of salt, and more than 30% believed reducing dietary salt to be of high importance. Only 26% of participants claimed to know the existence of a recommended maximum value of salt or sodium intake and 47% of them stated they knew the content of salt in food items. More than 80% of participants said that they would like food labeling to indicate high, medium, and low levels of salt or sodium and would like to see a clear warning label on packages of foods high in salt. Conclusions. Additional effort is required to increase consumers' knowledge about the existence of a maximum limit for intake and to improve their capacity to accurately monitor and reduce their personal salt consumption.
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Resumo:
This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 degrees C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The role of different types of emulsifying saltssodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)on microstructure and rheology of requeijao cremoso processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G/G). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.
Resumo:
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [C-14]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [C-14]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains (C-14 atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosiiy of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The role of the delta-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Delta(1)-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS. GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Delta(1)-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves. (C) 2011 Elsevier GmbH. All rights reserved.