932 resultados para STRAND BREAKS
Resumo:
Structural composite lumber (SCL) products often possess significantly higher design values than the top grades of solid lumber, making it a popular choice for both residential and commercial applications. The enhanced mechanical properties of SCL are mainly due to defect randomization and densification of the wood fiber, both largely functions of the size, shape and composition (species) of the wood element. Traditionally, SCL manufacturers have used thin, rectangular elements produced from either moderate density softwoods or low density hardwoods. Higher density hardwood species have been avoided, as they require higher pressures to adequately densify and consolidate the wood furnish. These higher pressures can lead to increased manufacturing costs, damage to the wood fiber and/or a product that is too dense, making it heavy and unreceptive to common mechanical fastening techniques. In the northeastern United States high density, diffuse-porous hardwoods (such as maple, beech and birch) are abundant. Use of these species as primary furnish for a SCL product may allow for a competitive advantage in terms of resource cost against products that rely on veneer grade logs. Proximity to this abundant and relatively inexpensive resource may facilitate entry of SCL production facilities in the northeastern United States, where currently none exist. However, modifications to current strand sizes, geometries or production techniques will likely be required to allow for use of these species. A new SCL product concept has been invented allowing for use of these high density hardwoods. The product, referred to as long-strand structural composite lumber (LSSCL), uses strands of significantly larger cross sectional areas and volumes than existing SCL products. In spite of the large strand size, satisfactory consolidation is achieved without excessive densification of the wood fiber through use of a symmetrical strand geometric cross-section. LSSCL density is similar to that of existing SCL products, but is due mainly to the inherent density of the species, rather than through densification. An experiment was designed and conducted producing LSSCL from both large (7/16”) and small (1/4”) strands, of both square and triangular geometric cross sections. Testing results indicate that the large, triangular strands produce LSSCL beams with projected design values of: Modulus of elasticity (MOEapp) – 1,750,000 psi; Allowable bending stress (Fb) – 2750 psi; Allowable shear stress (Fv) – 260 psi. Several modifications are recommended which may lead to improvement of these values, likely allowing for competition against existing SCL products.
Resumo:
Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^
Resumo:
Jozef Israels
Resumo:
Signatur des Originals: S 36/G03857
Resumo:
The current study examined the effects of a 15-minute daily physical activity break on the stress levels of white collar employees. An innovative group physical activity program, the Booster Break, was implemented in two worksites, both located in a large metropolitan area. One hundred sixteen participants were randomly assigned to one of three conditions; 43 participants were assigned to the Booster Break condition, 40 participants were assigned to an individual, computer-based physical activity condition, and 32 were assigned to a no-physical activity control condition. Self-report and objective measures were taken at baseline and after the completion of the intervention. There were no significant differences among conditions in perceived stress or blood pressure after the intervention. However, the data showed trends in the direction predicted with a decrease in perceived stress among Booster Break (change in perceived stress = -0.1) and computer prompt participants (change in perceived stress = -0.2) and an increase in perceived stress among the control group (change in perceived stress = 0.2). More research is recommended to fully understand the effects of worksite physical activity on stress.^
Resumo:
Following the success achieved in previous research projects usin non-destructive methods to estimate the physical and mechanical aging of particle and fibre boards, this paper studies the relationships between aging, physical and mechanical changes, using non-destructive measurements of oriented strand board (OSB). 184 pieces of OSB board from a French source were tested to analyze its actual physical and mechanical properties. The same properties were estimated using acoustic non-destructive methods (ultrasound and stress wave velocity) during a physical laboratory aging test. Measurements were recorded of propagation wave velocity with the sensors aligned, edge to edge, and forming an angle of 45 degrees, with both sensors on the same face of the board. This is because aligned measures are not possible on site. The velocity results are always higher in 45 degree measurements. Given the results of statistical analysis, it can be concluded that there is a strong relationship between acoustic measurements and the decline in physical and mechanical properties of the panels due to aging. The authors propose several models to estimate the physical and mechanical properties of board, as well as their degree of aging. The best results are obtained using ultrasound, although the difference in comparison with the stress wave method is not very significant. A reliable prediction of the degree of deterioration (aging) of board is presented.
Resumo:
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.
Resumo:
The Tn552 transposase, a member of the DDE superfamily of transposase and retroviral integrase proteins, has been expressed in soluble form. The purified protein performs concerted strand transfer in vitro, efficiently pairing two preprocessed transposon ends and inserting them into target DNA. For maximum efficiency, both participating DNA ends must contain the two adjacent transposase-binding sites that are the normal constituents of the Tn552 termini. As is the case with transposition in vivo, the insertions recovered from the reaction in vitro are flanked by repeats of a short target sequence, most frequently 6 bp. The reaction has stringent requirements for a divalent metal ion. Concerted strand transfer is most efficient with Mg2+. Although it stimulates strand transfer overall, Mn2+ promotes uncoupled, single-ended events at the expense of concerted insertions. The simplicity and efficiency of the Tn552 transposition system make it an attractive subject for structural and biochemical studies and a potentially useful genetic tool.
Resumo:
The formation of heteroduplex joints in Escherichia coli recombination is initiated by invasion of double-stranded DNA by a single-stranded homologue. To determine the polarity of the invasive strand, linear molecules with direct terminal repeats were released by in vivo restriction of infecting chimeric phage DNA and heteroduplex products of intramolecular recombination were analyzed. With this substrate, the invasive strand is expected to be incorporated into the circular crossover product and the complementary strand is expected to be incorporated into the reciprocal linear product. Strands of both polarities were incorporated into heteroduplex structures, but only strands ending 3′ at the break were incorporated into circular products. This result indicates that invasion of the 3′-ending strand initiates the heteroduplex joint formation and that the complementary 5′-ending strand is incorporated into heteroduplex structures in the process of reciprocal strand exchange. The polarity of the invasive strand was not affected by recD, recJ, or xonA mutations. However, xonA and recJ mutations increased the proportion of heteroduplexes containing 5′-ending strands. This observation suggests that RecJ exonuclease and exonuclease I may enhance recombination by degrading the displaced strands during branch migration and thereby causing strand exchange to be unidirectional.
Resumo:
When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3′ tail.
Resumo:
Acknowledgements We wish to thank Anura Shodhan for sharing unpublished results and Peter Schlögelhofer and Anura Shodhan for critically reading the manuscript. Part of this work was supported by grant P 27313-B20 from the Austrian Science Fund to JL.