969 resultados para STOCHASTIC PROCESSES
Resumo:
Traditional shading design principles guide the vertical and horizontal orientation of fins, louvres and awnings being applied to orthogonal planar façades. Due to doubly curved envelopes characterising many contemporary designs, these rules of thumb are now not always applicable. Operable blinds attempt to regulate the fluctuating luminance of daylight and aid in shading direct sunlight. Mostly they remain closed, as workers are commonly too preoccupied to continually adjust them so a reliance on electrically powered lights remains a preference. To remedy these problems, the idea of what it is to sustainable enclose space is reconsidered through the geometric and kinetic optimisation of a parametric skin, with sunlight responsive modules that regulate interior light levels. This research concludes with an optimised design and also defines some unique metrics to gauge the design’s performance in terms of, the amount of exterior unobstructed view, its ability to shade direct sunlight and, its daylight glare probability.
Resumo:
In this Column, I have teamed up with a colleague, Eike Bernhard, a doctoral student who is studying the impact of process modelling on organizational practices. Together, we want to shed light on an age-old question of Business Process Management: What is the value proposition of process modelling?
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.
Resumo:
What does a dance group in Benin that mixes contemporary and ethnic dancing have in common with Mongolian felt producers that want to enter the design market in Europe? These are both examples of learning processes in Creative Industries initiatives in developing countries. Following the concept of sustainable development, I argue that the challenge for developing countries in contemporary society is to meet the very real need of people for economic development and opportunities for income generation, while at the same time avoiding unintended and unwanted consequences of economic development and globalisation. The concept of the Creative Industries may be a way to promote a development that is sustainable and avoids social exclusion of groups-at-risk. In line with this, I argue that the Creative Industries sector could, in fact, link economic development and the continuation and evolution of local traditions and cultural heritage. A pressing question then is: how can education and learning contribute to creating a context in which talent can flourish? This study aims to provide a comprehensive analysis of the research problem of this thesis: what elements are conducive for individual learning processes in creative development initiatives? In this, I argue that it is crucial to determine what ingredients and characteristics contribute to making these initiatives successful, that is, to meet their specific goals, in a developing context. This is explored through a staged analysis: an overview of quantitative data, an inventory and comparative case studies and, finally, the description and analysis of two in-depth case studies – felt design in Mongolia (Asia) and dance in Benin (Africa), in which I was an observer of the action phase of the local interventions. The analysis culminates in practice-related outcomes related to the operation of creative development initiatives, as well as the contribution to the academic debate on issues like the cultural gap between developed and developing countries, transformative learning and the connection of learning spaces.
Resumo:
This paper reports on some findings from the first year of a three-year longitudinal study, in which seventh to ninth-graders were introduced to engineering education. Specifically, the paper addresses students’ responses to an initial design activity involving bridge construction, which was implemented at the end of seventh grade. This paper also addresses how students created their bridge designs and applied these in their bridge constructions; their reflections on their designs; their reflections on why the bridge failed to support increased weights during the testing process; and their suggestions on ways in which they would improve their bridge designs. The present findings include identification of six, increasingly sophisticated levels of illustrated bridge designs, with designs improving between the classroom and homework activities of two focus groups of students. Students’ responses to the classroom activity revealed a number of iterative design processes, where the problem goals, including constraints, served as monitoring factors for students’ generation of ideas, design thinking and construction of an effective bridge.
Resumo:
Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.
Resumo:
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and coworkers rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single–species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalise the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications including the analysis of models describing coupled chemical decay and cell differentiation processes, amongst others.
Resumo:
Lignocellulosic materials including agricultural, municipal and forestry residues, and dedicated bioenergy crops offer significant potential as a renewable feedstock for the production of fuels and chemicals. These products can be chemically or functionally equivalent to existing products that are produced from fossil-based feedstocks. To unlock the potential of lignocellulosic materials, it is necessary to pretreat or fractionate the biomass to make it amenable to downstream processing. This chapter explores current and developing technologies for the pretreatment and fractionation of lignocellulosic biomass for the production of chemicals and fuels.
Resumo:
Australian queer (GLBTIQ) university student activist media is an important site of self-representation. Community media is a significant site for the development of queer identity, community and a key part of queer politics. This paper reviews my research into queer student media, which is grounded in a queer theoretical perspective. Rob Cover argues that queer theoretical approaches that study media products fail to consider the material contexts that contribute to their construction. I use an ethnographic approach to examine how editors construct queer identity and community in queer student media. My research contributes to queer media scholarship by addressing the gap that Cover identifies, and to the rich scholarship on negotiations of queer community.
Resumo:
Reliable communications is one of the major concerns in wireless sensor networks (WSNs). Multipath routing is an effective way to improve communication reliability in WSNs. However, most of existing multipath routing protocols for sensor networks are reactive and require dynamic route discovery. If there are many sensor nodes from a source to a destination, the route discovery process will create a long end-to-end transmission delay, which causes difficulties in some time-critical applications. To overcome this difficulty, the efficient route update and maintenance processes are proposed in this paper. It aims to limit the amount of routing overhead with two-tier routing architecture and introduce the combination of piggyback and trigger update to replace the periodic update process, which is the main source of unnecessary routing overhead. Simulations are carried out to demonstrate the effectiveness of the proposed processes in improvement of total amount of routing overhead over existing popular routing protocols.
Resumo:
Pillar of salt: (3 hand-applied silver gelatin photographs) Statement: For women moving into new experiences and spaces, loss and hardship is often a price to be paid. These courageous women look back to things they have overcome in order to continue to grow.
Resumo:
This paper proposes a concrete approach for the automatic mitigation of risks that are detected during process enactment. Given a process model exposed to risks, e.g. a financial process exposed to the risk of approval fraud, we enact this process and as soon as the likelihood of the associated risk(s) is no longer tolerable, we generate a set of possible mitigation actions to reduce the risks' likelihood, ideally annulling the risks altogether. A mitigation action is a sequence of controlled changes applied to the running process instance, taking into account a snapshot of the process resources and data, and the current status of the system in which the process is executed. These actions are proposed as recommendations to help process administrators mitigate process-related risks as soon as they arise. The approach has been implemented in the YAWL environment and its performance evaluated. The results show that it is possible to mitigate process-related risks within a few minutes.
Resumo:
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.