994 resultados para SOLUBLE RECEPTOR
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Aims: Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obeseallergen sensitized mice. Main methods: Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1+) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings: Obesity and allergen-sensitization together increased the number of LYVE-1+ lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance: The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Resumo: A decisão da terapêutica hormonal no tratamento do cancro da mama baseiase na determinação do receptor de estrogénio alfa por imunohistoquímica (IHC). Contudo, a presença deste receptor não prediz a resposta em todas as situações, em parte devido a limitações do método IHC. Investigámos se a expressão dos genes ESR1 e ESR2, bem como a metilação dos respectivos promotores, pode estar relacionada com a evolução desfavorável de uma proporção de doentes tratados com tamoxifeno assim como com a perda dos receptores de estrogénio alfa (ERα) e beta (ERß). Amostras de 211 doentes com cancro da mama diagnosticado entre 1988 e 2004, fixadas em formalina e preservadas em parafina, foram utilizadas para a determinação por IHC da presença dos receptores ERα e ERß. O mRNA total do gene ESR1 e os níveis específicos do transcrito derivado do promotor C (ESR1_C), bem como dos transcritos ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 foram avaliados por Real-time PCR. Os promotores A e C do gene ESR1 e os promotores 0K e 0N do gene ESR2 foram investigados por análise de metilação dos dinucleotidos CpG usando bisulfite-PCR para análise com enzimas de restrição, ou para methylation specific PCR. Atendendo aos resultados promissores relacionados com a metilação do promotor do gene ESR1, complementamos o estudo com um método quantitativo por matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) suportado pelo software Epityper para a medição da metilação nos promotores A e C. Fez-se a avaliação da estabilidade do mRNA nas linhas celulares de cancro da mama MCF-7 e MDA-MB-231 tratadas com actinomicina D. Baixos níveis do transcrito ESR1_C associaram-se a uma melhor sobrevivência global (p = 0.017). Níveis elevados do transcrito ESR1_C associaram-se a uma resposta inferior ao tamoxifeno (HR = 2.48; CI 95% 1.24-4.99), um efeito mais pronunciado em doentes com tumores de fenótipo ERα/PgR duplamente positivo (HR = 3.41; CI 95% 1.45-8.04). A isoforma ESR1_C mostrou ter uma semi-vida prolongada, bem como uma estrutura secundária da região 5’UTR muito mais relaxada em comparação com a isoforma ESR1_A. A análise por Western-blot mostrou que ao nível da 21 proteína, a selectividade de promotores é indistinguivel. Não se detectou qualquer correlação entre os níveis das isoformas do gene ESR2 ou entre a metilação dos promotores do gene ESR2, e a detecção da proteína ERß. A metilação do promotor C do gene ESR1, e não do promotor A, foi responsável pela perda do receptor ERα. Estes resultados sugerem que os níveis do transcrito ESR1_C sejam usados como um novo potencial marcador para o prognóstico e predição de resposta ao tratamento com tamoxifeno em doentes com cancro da mama. Abstract: The decision of endocrine breast cancer treatment relies on ERα IHC-based assessment. However, ER positivity does not predict response in all cases in part due to IHC methodological limitations. We investigated whether ESR1 and ESR2 gene expression and respective promoter methylation may be related to non-favorable outcome of a proportion of tamoxifen treated patients as well as to ERα and ERß loss. Formalin-fixed paraffin-embedded breast cancer samples from 211 patients diagnosed between 1988 and 2004 were submitted to IHC-based ERα and ERß protein determination. ESR1 whole mRNA and promoter C specific transcript levels, as well as ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 transcripts were assessed by real-time PCR. ESR1 promoters A and C, and ESR2 promoters 0N and 0K were investigated by CpG methylation analysis using bisulfite-PCR for restriction analysis, or methylation specific PCR. Due to the promising results related to ESR1 promoter methylation, we have used a quantification method by matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDITOF MS) together with Epityper software to measure methylation at promoters A and C. mRNA stability was assessed in actinomycin D treated MCF-7 and MDA-MB-231 cells. ERα protein was quantified using transiently transfected breast cancer cells. Low ESR1_C transcript levels were associated with better overall survival (p = 0.017). High levels of ESR1_C transcript were associated with non-favorable response in tamoxifen treated patients (HR = 2.48; CI 95% 1.24-4.99), an effect that was more pronounced in patients with ERα/PgR double-positive tumors (HR = 3.41; CI 95% 1.45-8.04). The ESR1_C isoform had a prolonged mRNA half-life and a more relaxed 5’UTR structure compared to ESR1_A isoform. Western-blot analysis showed that at protein level, the promoter selectivity is undistinguishable. There was no correlation between levels of ESR2 isoforms or ESR2 promoter methylation and ERß protein staining. ESR1 promoter C CpG methylation and not promoter A was responsible for ERα loss. We propose ESR1_C levels as a putative novel marker for breast cancer prognosis and prediction of tamoxifen response.
Resumo:
The alkaline soluble Trypanosoma cruzi epimastigote antigen (ASEA) was assessed in dot-ELISA for the diagnosis of Chagas' disease. Serum samples (355) from chagasic and non-chagasic patients were studied, and IgG antibodies to ASEA were found in all patients with chronic Chagas' disease. In non-chagasic patients 95.6% were negative, except for those with leishmaniasis (visceral and mucocutaneous), and some patients from control group reacted in low titers. The data indicate that dot-ELISA using ASEA is suitable for seroepidemiologic surveys to be employed in endemic areas for Chagas' disease.
Resumo:
Journal of Biological Inorganic Chemistry (2010)15: 271-281
Resumo:
Recent data suggest that the clinical course of reactional states in leprosy is closely related to the cytokine profile released locally or systemically by the patients. In the present study, patients with erythema nodosum leprosum (ENL) were grouped according to the intensity of their clinical symptoms. Clinical and immunological aspects of ENL and the impact of these parameters on bacterial load were assessed in conjunction with patients' in vitro immune response to mycobacterial antigens. In 10 out of the 17 patients tested, BI (bacterial index) was reduced by at least 1 log from leprosy diagnosis to the onset of their first reactional episode (ENL), as compared to an expected 0.3 log reduction in the unreactional group for the same MDT (multidrug therapy) period. However, no difference in the rate of BI reduction was noted at the end of MDT among ENL and unreactional lepromatous patients. Accordingly, although TNF-alpha (tumor necrosis factor) levels were enhanced in the sera of 70.6% of the ENL patients tested, no relationship was noted between circulating TNF-alpha levels and the decrease in BI detected at the onset of the reactional episode. Evaluation of bacterial viability of M. leprae isolated from the reactional lesions showed no growth in the mouse footpads. Only 20% of the patients demonstrated specific immune response to M. leprae during ENL. Moreover, high levels of soluble IL-2R (interleukin-2 receptor) were present in 78% of the patients. Circulating anti-neural (anti-ceramide and anti-galactocerebroside antibodies) and anti-mycobacterial antibodies were detected in ENL patients' sera as well, which were not related to the clinical course of disease. Our data suggest that bacterial killing is enhanced during reactions. Emergence of specific immune response to M. leprae and the effective role of TNF-alpha in mediating fragmentation of bacteria still need to be clarified.
Resumo:
Active infection by T. gondii was evaluated by immunoassay for soluble SAG-1 (p30), the major surface antigen from T. gondii, specific antibodies and immune complexes in human cerebrospinal fluid (CSF) samples. A total of 263 samples of CSF were collected from hospitalized patients presenting neurological disorders and analyzed for antibodies to HIV. Patients were divided into two groups: HIV positive (n = 96) or HIV negative (n =167). The results of the assays showed that 45% of all samples were positive for soluble SAG-1. Toxoplasma Ag/Ab immune complexes were detected in 19% of the CSF samples and 62% were positive for T. gondii- specific IgG. A combination of these assays in the presence of clinical findings consistent with active Toxoplasma infection may predict the presence of toxoplasmic encephalitis. Moreover, detection of soluble SAG-1 in the CSF of these individuals appears consistent with active infection.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
In the present study, we have analyzed by sodium docecyl sulphate - polyacrilamide gel electrophoresis (SDS-PAGE), immunoblotting and Concanavalin A blotting (Con A blotting) proteins of membrane fractions and soluble fractions obtained from Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic (BTU-11) and an asymptomatic patient (BTU-10), as compared to the reference strain Portland 1. Both Brazilian strains showed a complex and homogeneous electrophoretic pattern of proteins, but some differences could be observed. Several glycoproteins were detected, particularly the proteins of 81, 72, 59 kDa and the protein of 62 kDa in the membrane proteins and cytosol, respectively. Many antigenic components were revealed by anti-Giardia rabbit IgG antibodies in the immunoblotting analysis. Among these components, the membrane protein of 32 kDa and the cytosol protein of 30 kDa could be related to giardin, as previously demonstrated.
Resumo:
BACKGROUND: To optimize the noninvasive evaluation of bone remodeling, we evaluated, besides routine serum markers, serum levels of several cytokines involved in bone turnover. METHODS: A transiliac bone biopsy was performed in 47 hemodialysis patients. Serum levels of intact parathyroid hormone (iPTH; 1-84), total alkaline phosphatases (tAP), calcium, phosphate and aluminum (Al) were measured. Circulating levels of interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1Ra) and soluble IL-6 receptor (sIL-6r) were determined using ELISA. Circulating IL-1beta, IL-6, IL-8, IL-10, IL-12p70 and tumor necrosis factor-alpha (TNF-alpha) were simultaneously quantified by flow cytometric immunoassay. RESULTS: Patients with low/normal bone formation rate (L/N-BFR) had significantly lower serum iPTH (p<0.001) and tAP (p<0.008) and significantly higher Al (p<0.025) than patients with high BFR. Serum calcium and phosphorus, however, did not differ (p=NS). An iPTH >300 pg/mL in association with tAP >120 U/L showed low sensitivity (58.8%) and low negative predictive value (44.0%) for the diagnosis of high BFR disease. An iPTH <300 pg/mL in association with normal or low tAP, <120 U/L, was associated with low sensitivity (66.7%) but high specificity (97.1%) for the diagnosis of L/N-BFR. Serum IL-1, IL-6, IL-12p70 and TNF-alpha were positively correlated with BFR, serum IL1-Ra and IL-10 with bone area, and by multiple regression analysis, tAP and IL-6 were independently predictive of BFR. CONCLUSIONS: Significant associations were found between several circulating cytokines and bone histomorphometry in dialysis patients. The usefulness of these determinations in the noninvasive evaluation of bone remodeling needs to be confirmed in larger dialysis populations.
Resumo:
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.
Resumo:
The last Crypto-Jews (Marranos) are the survivors of Spanish Jews who were persecuted in the late fifteenth century, escaped to Portugal and were forced to convert to save their lives. Isolated groups still exist in mountainous areas such as Belmonte in the Beira-Baixa province of Portugal. We report here the genetic study of a highly consanguineous endogamic population of Crypto-Jews of Belmonte affected with autosomal recessive retinitis pigmentosa (RP). A genome-wide search for homozygosity allowed us to localize the disease gene to chromosome 15q22-q24 (Zmax=2.95 at θ=0 at the D15S131 locus). Interestingly, the photoreceptor cell-specific nuclear receptor (PNR) gene, the expression of which is restricted to the outer nuclear layer of retinal photoreceptor cells, was found to map to the YAC contig encompassing the disease locus. A search for mutations allowed us to ascribe the RP of Crypto-Jews of Belmonte to a homozygous missense mutation in the PNR gene. Preliminary haplotype studies support the view that this mutation is relatively ancient but probably occurred after the population settled in Belmonte.