955 resultados para SINGLE-BASE POLYMORPHISMS
Resumo:
Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: The cytochrome P450 isoenzyme 3A5 (CYP3A5) has an important role on biotransformation of xenobiotics. CYP3A5 SNPs have been associated with variations on enzyme activity that can modify the metabolism of several drugs. Methods: In order to evaluate the influence of CYP3A5 variants on response to lowering-cholesterol drugs, 139 individuals with hypercholesterolemia were selected. After a wash-out period of 4 weeks, individuals were treated with atorvastatin (10 mg/day/4 weeks). Genomic DNA was extracted by a salting-out procedure. CYP3A5*3C, CYP3A5*6 and CYP3A5*1D were analyzed by PCR-RFLP and DNA sequencing. Results: >Frequencies of the CYP3A5*3C and CYP3A5*1D alleles were lower in individuals of African descent (*3C: 47.8% and *1D: 55.2%) than in non-Africans (*3C: 84.9% and *1D 84.8%, p<0.01). Non-Africans carrying *3A allele (*3C and *1D combined alleles) had lower total and LDL-cholesterol response to atorvastatin than non-*3A allele carriers (p<0.05). Conclusion: CYP3A5*3A allele is associated with reduced cholesterol-lowering response to atorvastatin in non-African individuals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: ABCA1 plays an important role in HDL metabolism. Single nucleotide polymorphisms (SNPs) in ABCA1 gene were associated with variation in plasina HDL-c. Methods: The effect of the ABCA1 SNPs C-14T, R219K and of a novel variant C-105T on serum lipids was investigated in 367 unrelated Brazilian individuals (224 hypercholesterolemic and 143 normolipidemic). The relation between ABCA1 SNPs and the lipid-lowering response to atorvastatin (10 mg/day/4 weeks) was also evaluated in 141 hypercholesterolemic (HC) individuals. The polymorphisms were detected by PCRR_FLP and confirmed by DNA sequencing. Results: Linkage disequilibrium was found between the SNPs C-105T and C-14T in the HC group. HC individuals carrying - 105CT/TT genotypes had higher serum HDL-c and lower triglyceride and VLDL-c concentrations as well as lower TG/HDL-c ratio compared to the -105CC carriers (p<0.05). The R219K SNP was associated with reduced serum triglyceride, VLDL-c and TG/HDL-c ratio in the HC group (p<0.05), and with an increased serum apoAI in NL individuals. The effects of ABCA1 SNPs on basal serum lipids of HC individuals were not modified by atorvastatin treatment. Conclusions: The ABCA1 SNPs R219K and C-105T were associated with a less atherogenic lipid profile but not with the lowering-cholesterol response to atorvastatin in a Brazilian population. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Resumo:
Background. Visceral leishmaniasis (VL) is caused by Leishmania donovani and Leishmania infantum chagasi. Genome-wide linkage studies from Sudan and Brazil identified a putative susceptibility locus on chromosome 6q27. Methods. Twenty-two single-nucleotide polymorphisms (SNPs) at genes PHF10, C6orf70, DLL1, FAM120B, PSMB1, and TBP were genotyped in 193 VL cases from 85 Sudanese families, and 8 SNPs at genes PHF10, C6orf70, DLL1, PSMB1, and TBP were genotyped in 194 VL cases from 80 Brazilian families. Family-based association, haplotype, and linkage disequilibrium analyses were performed. Multispecies comparative sequence analysis was used to identify conserved noncoding sequences carrying putative regulatory elements. Quantitative reverse-transcription polymerase chain reaction measured expression of candidate genes in splenic aspirates from Indian patients with VL compared with that in the control spleen sample. Results. Positive associations were observed at PHF10, C6orf70, DLL1, PSMB1, and TBP in Sudan, but only at DLL1 in Brazil (combined P = 3 x 10(-4) at DLL1 across Sudan and Brazil). No functional coding region variants were observed in resequencing of 22 Sudanese VL cases. DLL1 expression was significantly (P = 2 x 10(-7)) reduced (mean fold change, 3.5 [SEM, 0.7]) in splenic aspirates from patients with VL, whereas other 6q27 genes showed higher levels (1.27 x 10(-6) < P < .01) than did the control spleen sample. A cluster of conserved noncoding sequences with putative regulatory variants was identified in the distal promoter of DLL1. Conclusions. DLL1, which encodes Delta-like 1, the ligand for Notch3, is strongly implicated as the chromosome 6q27 VL susceptibility gene.
Resumo:
Background. Malaria is one of the most significant infectious diseases in the world and is responsible for a large proportion of infant deaths. Toll-like receptors (TLRs), key components of innate immunity, are central to countering infection. Variants in the TLR-signaling pathway are associated with susceptibility to infectious diseases. Methods. We genotyped single nucleotide polymorphisms ( SNPs) of the genes associated with the TLR-signaling pathway in patients with mild malaria and individuals with asymptomatic Plasmodium infections by means of polymerase chain reaction. Results. Genotype distributions for the TLR-1 I602S differed significantly between patients with mild malaria and persons with asymptomatic infection. The TLR-1 602S allele was associated with an odds ratio ( OR) of 2.2 ( P = .003; P(corrected) = .015) for malaria among patients with mild malaria due to any Plasmodium species and 2.1 ( P = .015; P(corrected) = .75) among patients with mild malaria due to Plasmodium falciparum only. The TLR-6 S249P SNP showed an excess of homozygotes for the TLR-6 249P allele in asymptomatic persons, compared with patients with mild malaria due to any Plasmodium species (OR 2.1; 95% confidence interval [CI], 1.1-4.2; P = .01; P(corrected) = .05), suggesting that the TLR-6 249S allele may be a risk factor for malaria ( OR, 2.0; 95% CI, 1.1-3.7; P = 0.01; P(corrected) = .05). The TLR-9-1486C allele showed a strong association with high parasitemia ( P < .001). Conclusions. Our findings indicate that the TLR-1 and TLR- 6 variants are significantly associated with mild malaria, whereas the TLR-9-1486C/T variants are associated with high parasitemia. These discoveries may bring additional understanding to the pathogenesis of malaria.
Resumo:
Ureaplasma diversum infection in bulls may result in seminal vesiculitis, balanoposthitis and alterations in spermatozoids. In cows, it can cause placentitis, fetal alveolitis, abortion and the birth of weak calves. U. diversum ATCC 49782 (serogroups A), ATCC 49783 (serogroup C) and 34 field isolates were used for this study. These microorganisms were submitted to Polymerase Chain Reaction for 16S gene sequence determination using Tact High Fidelity and the products were purified and bi-directionally sequenced. Using the sequence obtained, a fragment containing four hypervariable regions was selected and nucleotide polymorphisms were identified based on their position within the 16S rRNA gene. Forty-four single nucleotide polymorphisms (SNP) were detected. The genotypic variability of the 16S rRNA gene of U. diversum isolates shows that the taxonomy classification of these organisms is likely much more complex than previously described and that 16S rRNA gene sequencing may be used to suggest an epidemiologic pattern of different origin strains. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
A dosing algorithm including genetic (VKORC1 and CYP2C9 genotypes) and nongenetic factors (age, weight, therapeutic indication, and cotreatment with amiodarone or simvastatin) explained 51% of the variance in stable weekly warfarin doses in 390 patients attending an anticoagulant clinic in a Brazilian public hospital. The VKORC1 3673G>A genotype was the most important predictor of warfarin dose, with a partial R(2) value of 23.9%. Replacing the VKORC1 3673G>A genotype with VKORC1 diplotype did not increase the algorithm`s predictive power. We suggest that three other single-nucleotide polymorphisms (SNPs) (5808T>G, 6853G>C, and 9041G>A) that are in strong linkage disequilibrium (LD) with 3673G>A would be equally good predictors of the warfarin dose requirement. The algorithm`s predictive power was similar across the self-identified ""race/color"" subsets. ""Race/color"" was not associated with stable warfarin dose in the multiple regression model, although the required warfarin dose was significantly lower (P = 0.006) in white (29 +/- 13 mg/week, n = 196) than in black patients (35 +/- 15 mg/week, n = 76).
Resumo:
Preeclampsia is a multifactorial disease of unknown etiology that features with wide clinical symptoms, ranging from mild preeclampsia to severe forms, as eclampsia and HELLP syndrome. As a complex disease, preeclampsia is also influenced by genetic and environmental factors. Aiming to identify preeclampsia susceptibility genes, we genotyped a total of 22 genetic markers (single nucleotides polymorphisms SNPs) distributed in six candidates genes (ACVR2A, FLT1, ERAP1, ERAP2, LNPEP e CRHBP). By a case-control approach, the genotypic frequencies were compared between normotensive (control group) and preeclamptic women. The case s group was classified according to the disease clinical form in: preeclampsia, eclampsia and HELLP syndrome. As results we found the following genetic association: 1) ACVR2A and preeclampsia; 2) FLT1 and severe preeclampsia; 3) ERAP1 and eclampsia; 4) FLT1 and HELLP syndrome. When stratifying preeclampsia group according to symptoms severity (mild and severe preeclampsia) or according to the time of onset (early and late preeclampsia), it was detected that early preeclampsia is strongly associated to risk preeclampsia, eclampsia and HELLP syndrome have different genetic bases, although FLT1 gene seems to be involved in preeclampsia and HELLP syndrome pathophisiology
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Matrix metalloproteinase-7 (MMP-7) and -9 (MMP-9) modulate important functions strictly related to the development, invasion and metastasis of several human cancers among them the squamous cell carcinoma of the tongue (SCCT). However, individual genetic factors such as the functional single nucleotide polymorphisms (SNPs) influence the pattern of protein expression of these MMPs and thus may be related to the variability observed in the clinical behavior of patients with SCCT. In this context, the present cross-sectional study aimed to evaluate the association between the frequency of the functional SNPs MMP-7 -181 A/G and MMP-9 -1562 C/T and the clinical (age, gender and metastasis) and pathological (malignancy histological grading and immunohistochemistry expression) features of SCCT cases. Genotyping of these SNPs were performed by PCR-RFLP on DNA samples from 71 cases of SCCT and 60 individuals without cancer who constitute the control group. Among the results of this research, it was observed that the frequency of the polymorphic alleles MMP-7 -181 G and MMP-9 -1562 T in SCCT patients was 28% and 12%, respectively, and the frequency of the heterozygotes A/G (PR = 2.00; p < 0.001) and C/T (PR = 1.54; p = 0.014) were significantly higher in the patient group than in the controls. The prevalence of patients carrying the combination of SNPs studied was significantly associated with SCCT cases (PR = 2.00; p = 0.011) and metastasis (PR = 2.00; p < 0.001). Furthermore, with the frequency of SNPs analyzed, the age, gender, histological grading and immunoreactivity of MMP-7 and MMP-9 formed clinical and pathological parameters relevant to the identification of population subgroups more related to the development of SCCT and metastasis. Based on these results, it is suggested that the protein expression levels of MMP-7 and -9 substantially influence the balance between their pro- and anticancer biological functions and hence the clinicopathological profile of the squamous cell carcinoma of the tongue
Resumo:
Background: Oculocutaneous albinism (OCA) is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species.Results: Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A), which leads to the conversion of tryptophan into a stop codon at residue 477.Conclusion: This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)